
 

 

 
Abstract— Although several studies have been conducted on the 

sucker-rod pumping system, even today, the acquisition of the 
polished rod position is carried out by using position transducers. In 
this paper, we present experimental results showing that the dynamic 
position of the polished rod can be inferred from the torque current of 
a three-phase induction motor (which is given by sensorless vector 
AC-drive) using nonlinear autoregressive model with exogenous 
input (NARX) with wavelet network (wavenet). The results obtained 
in the validation stage show that, on the basis of the experimental set 
used in this work, the best estimated model is suitable to represent the 
dynamic behavior of the polished-rod of the pumping unit. 

 
Keywords— NARX model, polished rod position, sucker-rod 

pumping, wavelet network, wavelet frames. 

I. INTRODUCTION 
UCKER-ROD pumping is the most widely-used artificial 
lift method for onshore oil wells all over the world [1]. 

This system transforms a rotary motion provided by prime 
mover in a reciprocating motion that is transferred to the 
downhole pump by a set of rods, in the form of a vertical 
displacement, which provides mechanical energy to the fluid 
by allowing its elevation to the surface [2].  The dynamic 
position of the polished rod is an aid in carrying out a 
diagnosis of onshore wells. These diagnoses are generally 
conducted through an interpretation of the pump dynamometer 
card, which is a plot of the calculated loads at various 
positions of pump stroke, and represents the load the pump 
applies to the bottom of the rod string [3]. It is usually 
calculated from the surface dynamometer card, which is the 
plot of the measured or predicted rod loads at the various 
positions throughout a complete stroke [2]. 

Since the 1960s a number of studies have been undertaken   
to build models that are computer-aided and able to reproduce 
the dynamic behavior of sucker-rod pumping. In [3] the rod 
string is represented by a linear model, by means of the one-
dimensional damped wave equation. The boundary conditions 
are given for the polished rod and the pump. Thus, with the 
aid of partial differential equations these systems were solved 
using a finite differences method.  On the basis of a concept of 
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[3] more efficient models were devised that take account of 
the dynamics of the fluid and rod [4], [5], [6]. Another useful 
technique was outlined in [7] with the aim of analyzing the 
dynamic behavior of the sucker rod string. However, due to 
the highly nonlinear nature of the relationship between the oil 
well and sucker-rod pump, a considerable effort is required to 
apply  these studies for prediction or on-field simulation  in a 
real system , and as a result,, even today, the acquisition of the 
polished rod position is carried out  by  using transducers. 

According to [8] and [9], it is possible to model a dynamic 
system directly from measured input and output data , by 
employing  a structured model that does not use any priori 
information about the behavior of the system. This type of 
structure is known as a black-box model. According to [10], 
there are two main reasons for obtaining a model from a 
dynamic system using the input-output data in a black box 
approach: “1) Even the best theoretical model built from 
equations of motion is still only an approximation of reality; 
2) Due to situations where the theoretical model is more 
complicated, or the physics of the process is poorly 
understood, the only reliable information is experimental 
data”. 

It is well known that artificial neural networks (ANN) 
constitute a powerful tool in nonparametric estimates due to 
their ability to be used as an arbitrary function approximation 
mechanism that 'learns' from observed data [11], [12], [13]. In  
recent  years,  a special class  of  artificial  neural  networks, 
known as the  wavelet  networks (also called wavenet), have 
aroused considerable interest  [14], [15], [16]. This new class 
of ANN, was first studied by [17] and improved by [18], as an 
alternative to the classical feedforward neural network (FNN), 
for approximating arbitrary nonlinear functions. Basically, the 
wavenet is a wavelet decomposition implemented in a one-
hidden-layer neural network, where the wavelets are activation 
functions of hidden neurons [18]. One of the main advantages 
of wavelet network compared with ANN is that whereas the 
wavelet theory provides useful guidelines for the construction 
and initialization of the networks, ANN use random data [18], 
[19].  

Basically, wavelet networks can be built by adopting two 
different approaches, which are as follows: a multiresolution 
approach [20] and the single-scaling radial wavelet frames 
[21]. In the first approach, the wavelets used in the expansion 
form an orthogonal basis. In the second, the expansion is built 
by using nonorthogonal wavelets. In this paper, we consider 
the wavelet network based on the single-scaling radial wavelet 
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frames. This choice simplifies the use of wavelet networks in 
high dimensional systems (see [21], Section III A, for more 
details). 

In this paper, we use the wavelet network as a nonlinearity 
estimator of a nonlinear autoregressive model with exogenous 
input (NARX) [22] to infer the position of the polished rod 
from torque current of the three-phase AC induction motors. 
The main advantage of using torque current is that this 
information is given by sensorless vector AC-drive, which is 
used in most onshore wells for starting and speed control of 
AC induction motors. 

II. NARX MODEL 
 We set out from the linear autoregressive model with 
exogenous input (ARX) [23], which is given by the following 
equation: 
 
 푦(k) + 푎 y(k-1) +⋯+ 푎 y(k-푛푎) = 
                        푏 u(k -푛푘) + ⋯  + 푏 u(k - 푛푘-푛푏+1)           (1) 
 
where, 푦 and 푢 are, respectively, the output and input data,  푘 
is the discrete time instant; 푛  is the number of autoregressors, 
푛  is the number of exogenous regressors, and 푛  are the 
delay from input to  output in terms of the number of samples. 
Isolating 푦(k) in (1), it is possible determine the next output, 
through a weighted sum of its previous observation, called 
regressors 
 
푦(k) = −푎 y(k-1)−⋯− 푎 y(k-푛푎) + 
                   푏 u k -푛푘 + ⋯  + 푏 u k - 푛푘-푛푏+1              (2) 
 
We can then rewrite the equation (2) using the compact 
notation 
 

                                    푦(푘) = 푥 (푘)휃                              (3) 
 
where, 푥 (푘) is the vector of regressors given in (4), and 휃 is 
the vector coefficients given in (5) 
 

푥(푘) = [y(k-1), … ,y(k-푛푎), 
u൫k -푛푘൯, … ,u൫k - 푛푘-푛푏+1൯]T                                           (4)                                                               
 

                      휃 = −푎  , … ,−푎 ,푏 , … , 푏                 (5) 
 
Equation (4) represents the memory of the model, called 
vector of regressors. 
 Based on the linear ARX model, the nonlinear ARX 
(NARX) model use nonlinear mapping F between the input 
and output data, rather than a weighted sum that represents  
linear mapping, such as  ARX. 
 
                            푦(푘)= F 푥(푘)                           (6) 
 
where, 푥(푘) is the vector of regressors given in (4), and F is a 
nonlinear function. In this paper, F is a wavelet network, 
which is composed of radial wavelet frames [24]. 

 In order to capture the linearity in the sampled data set more 
effectively, it is possible to rewrite (6) as follows, 
 
                          푦(푘)= F 푥(푘) + 푥(푘)휃 + 푙                     (7) 
 
where, 휃 represents the linear coefficients, and 푙 is the output 
offset. In other words, the NARX structure considered in this 
work is a series-parallel combination, as shown Fig. 1. 

 
The capacity of linear function approximation, block 
(푥(푘)휃 + 푙), is discussed in full detail in [25]. 

III. WAVELET 
 In this section, we briefly outline some of the basic concepts 
of   wavelet, which will allow an understanding of the wavelet 
network in Section IV. 

A. Wavelet and Radial Wavelet 
Wavelets (“little waves”) are functions located both in time 

and frequency. These functions allows decompose a finite 
energy signal into different frequency components by 
superposition of functions obtained after scaling and 
translating an initial function over test function 휓, known as 
Mother Wavelet [26].  

Wavelet Analysis is different from other techniques in that 
it analyses frequency components with a resolution that 
matches their scale. This attractive theory has been 
successfully employed in many applications, including 
artificial neural network, communication, numerical analysis 
(see, for example, [21], [27] and [28]), among others. 

For a function to be classified as a wavelet, it must meet the 
following requirements: 
1) The average value of the wavelet in the time domain should 
be zero 

                                      휓(푡)푑푡 = 0
∞

                                       (8) 

2) The function must have finite energy 

                                     |휓(푡)| 푑푡 = 1
∞

                                   (9) 

3) The function must be admissible as a wavelet 

                          퐶 = 2휋
휓(휔)

|휔| 푑휔                              
∞

(10) 

where 휓 is the Fourier transform of the wavelet function 휓, 
and 휓 ∈ 퐿 (ℝ). It is worth noting that the inverse wavelet 
transform only exists for 0 < 퐶 < ∞. This means that the 
analyzed signal can be reconstructed without loss of 
information [26].  
  To obtain a wavelet in 퐿 (ℝ ), as shown in [24], the 

푢(푘) 

푦(푘) 

푦(푘) 
y(k-1),..., y(k-na),..., 
u(k-nk), ...,               
u(k-nk-nb+1) 

Nonlinear 
Function 

 

Linear 
Function 

Fig. 1 NARX model. 
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symmetrical radial wavelet (11) will be considered 
 
                          휓(휔) = 휙(‖휔‖) ∶ 휔 ∈ ℝ                         (11) 
 
where 휓(휔) is the Fourier transform of 휓(푥), with 푥 ∈ ℝ , 
and ‖푥‖ = √푥 푥 is the Euclidian norm, and it is necessary for 
the radial wavelet function (11) to satisfy the admissibility 
condition 
 

                    퐶 = (2휋)
휓(ℎ휔)

ℎ 푑ℎ
∞

< ∞                   (12) 

  
The reader should refer to [24] and [26] for a detailed account 
of these requirements. 

B. The Continuous Wavelet Transform 
Any finite energy signal 푓 ∈ 퐿 (ℝ ) can be decomposed 

and represented by wavelets functions 휓 that satisfy the 
condition (12) 

 
(푇  푓(푥))(푎,푏) = 푤(푎,푏)

=  푓(푥)
1

|√푎 |
휓

푥 − 푏
푎 푑푥            (13) 

ℝ
 

 
 

and reconstructed by its inverse 
 

푓(푥) =
1
퐶

1
푎

1
|√푎 |

푤(푎, 푏)휓
푥 − 푏
푎 푑푏푑푎

ℝ
 (14) 

 
where, (13) is the continuous wavelet transform (CWT) and 
(14) is the inverse wavelet continuous transform (IWT); 
푎 ∈ ℝ  and 푏 ∈ ℝ  are respectively, dilation and translation  
parameters. The term given in (15) that was taken from CWT 
in (13), is called mother wavelet function. 
 

                               휓(푥) =
1

|√푎 |
휓

푥 − 푏
푎                           (15) 

For more details about continuous wavelet transform, see [26]. 

C. Frame Condition 
For an IWT to be implemented in a digital machine, it must 

be discretized. When the IWT is discretized, some conditions 
are required to ensure that this discrete version of the 
reconstruction of 푓 can actually hold. One of the solutions that 
meet these requirements is called Frames which was originally 
developed by [29] and discussed in [26]. It is used to analyze 
the stability, integrity and redundancy of a discrete 
representation of a signal using wavelets. A frame is a set of 
“redundant bases” {Ψ(푎,푏);  푎 > 1,푏 휖 ℤ} that satisfies the 
frame condition  

 

퐴‖푓‖ ≤ 〈푓,휓 , 〉
,

≤ 퐵‖푓‖               (16) 

and thus  allows  a signal 푓 ∈ 퐿 (ℝ ) to be described through 

a finite sum of nonorthogonal terms. Where ‖∙‖ denotes the 
norm of the function, ‖푓‖  is the energy of the function 푓; 
퐴 > 0 and 퐵 < ∞ denote, respectively, the lower and upper 
frame bounds; 휓 ,  (with 푚 ∈ ℤ and 푛 ∈ ℤ ) is a radial 
wavelet frame function that satisfies the condition (5). 

 The wavelet frame theorem was first developed by [26] 
to ensure the construction of wavelets in 퐿 (ℝ) space. The 
extension to the 퐿 (ℝ ) space was successfully developed in 
[24] by adopting two approaches: the single-scaling and the 
multiscaling wavelet frames. In the case of the single-scaling, 
a single dilation parameter is used in all the dimensions of a 
wavelet, whereas in the multiscaling, an independent dilation 
parameter is used in each dimension. Thus the former is 
structurally simpler than the latter.  We only consider single-
scaling wavelet frames here. 

D. Discrete Wavelet family and Inverse Discrete Wavelet 
Transform 

Once the condition (16) is satisfied, to obtain the discrete 
version of (15), its dilation and translation parameters need to 
be replaced by sampled values. In this case, 푎 is replaced by 
푎  and 푏 is replaced by 푛푏 푎 , which are, respectively, the 
dilation and translation step 

  
{휓 , (푥) = 푎 ⁄ 휓(푎 푥 − 푛푏 ) ∶ 푚 ∈ ℤ, 푛 ∈ ℤ   }    (17) 

 
where, 푎 > 1 and 푏 > 0 are two scalar constants. Then, the 
inverse wavelet transform (14) can be discretized into 

 

                                푓(푥) = 푤 ,
,

휓 , (푥)                          (18) 

 
where, 푤 ,  is the wavelet coefficient; 휓 ,  satisfies the 
condition (12) and constitutes a radial wavelet frame of 
퐿 (ℝ ). 

IV. WAVELET NETWORK AND ITS STRUCTURE 
If the parameters of the inverse continuous wavelet 

transform (IWT) in (14) (푤,푎 and 푏) are discretized according 
to the sample data (resulting in (17)), the adaptive 
discretization of the inverse wavelet transform given in (18), 
can be called a wavelet network. As mentioned earlier, this 
structure can be regarded as a neural network, whose wavelets 
are the activation function of hidden neurons. 

In practical applications, it is unnecessary and impossible to 
construct a wavelet network using infinite radial wavelet 
frames, and hence, the decomposition (18) must be truncated 
into a finite set. If the truncation uses a regular wavelet lattice 
{푎 푥,푛푏 }, obviously, we can expect that the truncation 
does not take into account the sparseness of the training data; 
as a result,  many wavelets whose support does not contain 
any data point, may remain in the truncated frame [21]. 
Reference [21] seeks to overcome this problem by using an 
algorithm able to avoid “empty” wavelets which can improve 
the quality of the truncated wavelet frame for wavelet network 
construction.  
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In the following section, we summarize the basic 
procedures for building and training the wavelet network: 

 
Considering a truncated family of (17) 
 
              {휓(푎 푥 − 푛푏 ) ∶ 푚 ∈ 푆 ,푛 ∈ 푆 (푛)  }           (19) 
 

where, 푆 ⊂ 푧  is a finite set of 푛, and 푆 ⊂ ℤ corresponding 
to a finite set of 푚 to desired resolution level estimation, are 
both a finite subset of ℤ.  

 
1 For each sample data 푧푒 = 푢(1),푦(1) , … , (푢(푘), 푦(푘))  
of the finite set of dimension 푘, determine the wavelet in (19) 
whose supports contain the sample point, and build the set of 
wavelets candidates to be used on the wavelet network (library 
W). 
 
2 Considering the wavelets present in W as regressors. To 
remove the redundant wavelets in W for the estimation f, use 
the heuristic algorithms given in [21], Section III, to select the 
best set of wavelets belonging to the library W. 
 
3 Assuming that the most suitable set of wavelets Ψ =
[휓 , … ,휓 ] employed to represent the system output 푌 =
(푦 , … ,푦 )  is known. Then, basically, the problem consists 
of how to use the last square solution in Y = Ψ휔 to determine 
the weight (휔) of the wavelet network. 

 A number of considerations are necessary to ensure that the 
above steps are effected: 
 we consider the wavelet function as the second derivative of 
a Gaussian function (the “Mexican Hat”) 

                       휓(푥) = dim (푥)− |푥| 푒
| |

                  (20) 
Where, 푥 is the vector of regressors (given in (4)) dilated, 
translated and well conditioned (applying principal component 
analysis techniques  - PCA; see [22] for more details), and 
|푥| = 푥 푥. In this case, the Mexican Hat was chosen 

because it offers good time-frequency localization [26]; 
 we take {푎 푥, 푛푏 } in the form of a dyadic grid ,i.e., 푎  = 
2 and 푏 = 1;  
 The choice of the number of wavelets functions used in the 
structure wavenet of this paper was performed by using the 
generalized cross-validation algorithm (GCV): 퐺퐶푉(푆) =
∑ (푓(푢 )− 푦 ) + 2 푆 휎 . This algorithm selects the 

best functions that serve to minimize the estimation error. 
Where, GCV is minimized with respect to S. 푓 is the 
approximation given by wavenet, S is the number of wavelets 
functions of the network, N is the sample length of the input 
vector 푢 . 푦  are input and output sampled data belonging to 
the estimation data set, and 휎  is the noise variance estimated 
from 푢  and 푦 . 

 
It should be remembered that in this paper the wavelet 

network is used to estimate the regression model given in (6). 
Thus, on the basis of the previous theory about the wavelet 
network construction, and in the NARX model (7), we can 

rewrite expansion (18) as follows: 
 

푓(푥) = 푎 휑(퐷 (푥 − 푟)푄 − 푡 )

+ 휔 휓(퐷 (푥 − 푟)푄 − 푡 )

+  푥(푘)푃휃 + 푙                  (21) 
 

where, the scaling function (22) is used in wavelet network to 
improve the regularity of the estimator. Scaling functions and 
wavelet functions are both used at different dilation scales, in 
a structure similar to the wavelet packet decomposition [21], 
[27], [28]. 

 

                           휑(푥) = 푒
| |

                (22) 
 
and 휓(푥) was defined in (20), Where r is the mean value of 
the regressor vector computed (1 x m), P is a matrix of the 
linear subspace (m x p), Q is a matrix of nonlinear subspace 
(m x q) obtained by principal component analysis applied to 
the regressors in 푥. 휃 is the vector of linear coefficients (p x 
1), 푎  is the vector of coefficients associated with the scalons 
(s x 1), 휔  is the vector of coefficients associated with the 
wavelons (nw x 1); 퐷  is the dilatation matrix associated with 
scalons (s x 1), 퐷  is the dilatation matrix associated with 
wavelons (nw × 1); 푡  is the translation matrix associated 
with scalons (ns x q), 푡  is the translation matrix associated 
with wavelons (nw x q), 푙 is output offset (scalar), ns is the 
number of scalons and nw the number of wavelons. 
 The wavelet network architecture used in this work is 
shown in Fig. 2. 
 

 
 It should be remembered that the wavenet structure used 

in this work represents the nonlinear function of the NARX 
model. Therefore, for the nonlinear and linear part of the 
NARX model and wavenet, respectively, it can be verified 
that: F(. ) (of the NARX model) = ∑ 푎 휑(. ) +

F(x) 

Fig. 2 Structure of Wavelet Network based on NARX  
      model. 

ω 

l 

ω 
a
sk

a

. 

. 

. 

y(k-1) 

y(k-na) 

u(k-nk) 

u(k-nb-nk-1) 

φ
m

φ 

ψ 

ψ 

 

. 

.

. 

. 

. 

. 

. 

. 

θ 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 1, Volume 6, 2012 69



 

 

∑ 휔 휓(. ) (of the wavenet); and 푥(푘)휃 + 푙 (of the 
NARX model) = 푥(푘)푃휃 + 푙 (of the wavenet). 

V. CASE STUDY 

A. Oil Well Pump Unit  
 The experiment set-up involves a pumping unit, an oil well 
that has been developed for tests (as shown in Fig. 3 (a)) and a 
data acquisition system to sample the position and torque 
current of the motor (generated by AC-drive), as shown in Fig. 
3 (b) and 3 (c), respectively. 

 A fluid with low viscosity, such as light oil, was used in the 
well. A three-phase asynchronous induction motor with 5 HP, 
6 poles, and speed nameplate of 1160 rpm controlled by an 
AC-driver, was used as the primary power for  the pump unit, 
and a string potentiometer as position transducer. The 
experiment was conducted under controlled conditions, and 
simulated actual operating conditions. In this case, the well 
starts with the annulus within the high level range. It then 
changes to normal operating conditions, arriving at the 

condition in which the level in the annular is insufficient to 
complete the task of filling the piston chamber during the 
upward cycle.  The frequency of the pumping unit was also 
randomly varied in order to excite the dynamics of the system 
and simulate normal operating conditions. 

.  

B. Choice of Input Signal 
 The torque current of the motor (torque-producing 
current) was chosen as an input variable in the system 
identification because it can be acquired directly from the read 
parameter of the sensorless vectorial AC-drives, and also 
because it is strongly correlated to the change of position in 
the sucker rod.  
 It should be remembered that the input current motor can be 
decomposed into two components (see Fig. 4): the flux-
producing current (IM) and the torque-producing current (IR), 
as shown in (23), 
 

                                      퐼 = 퐼 + 퐼                                          (23) 

 

 
where, 퐼  is the stator current [30]. The behavior of induction 
motors in a pumping unit motor is dynamic and cyclic. 
Throughout the stroke, torque and speed are continually 
changing as the motor reacts to the dynamic load. The torque 
produced in the motor is proportional to the cross product of 
퐼  and 퐼  [30]. Increasing the load on the motor shaft also 
increases the strength of the magnetic field in the stator and 
rotor.  In an AC-motor, the torque-producing current (also 
called, torque current) increases in proportion to the increase 
in the load torque. Naturally these changes can be captured 
through IR. 
 The interested reader is referred to [30] for further details 
about sensorless vector AC-drives. 

C. Data Collection 
 The torque current of the motor (generated by Ac-drive) and 
the position of the polished rod, input (u) and output (y) data 
respectively, were sampled with a period of 0.05 seconds and 
a total of 31000 data were collected. The data set was split into 
two subsets, to create two independent data sets.  The first 
range (푧푒 = {푢(1), 푦(1), … , 푢(17000),푦(17000)}) was 
used for model estimation, and the second range (푧푣 =
{푢(17001), 푦(17001), … , 푢(31000),푦(31000)}) was used 

Fig. 3 Oil well and pumping unit (a); data acquisition 
system of position (b) and data acquisition system of 
torque current (b). 
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Fig. 4 Simplified equivalent circuit of an AC induction 
motor. Where V is the stator suply voltage, XM  is the 
magnetizing inductance and the relation R’R/S is the 
variable rotor resistence. 
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for model validation. Fig. 5 shows a window with 3000 
samples of filtered input-output data. 
 

 
D. Model Order selection 
 According to [22], [23], the choice of a model orders is a 
combination of prior knowledge of the system and trial and 
error. A high dynamic order of the model can result in high 
variance error and increases its complexity, whereas 
underestimating the orders will result in a biased model [23].  
 In this paper, several orders were suggested and evaluated 
through Akaike’s final prediction error (FPE). The 
representation of FPE is defined as, 
 
                               퐹푃퐸 = 푉 (휃|푍 )                       (24) 
 
where, 푉  (휃|푧푒 ) = det ( ∑ 휀(푡, 휃 ) 휀(푡, 휃 ) ) is the 
loss function, 푧푒  is the estimation data, N is the length of the 
input or output data. 휀(푡, 휃 ) =  푦 (푡)− 푦 (푡|휃 ) is the 
prediction error parameterized by 휃 , between measurement 
output y(t) and predicted output 푦(푡|휃), and 푛  is the number 
of estimated parameters. 

E.  Evaluating the Estimated Model 
 It is possible evaluate how much (in percentage terms) each 
estimated model is able to infer the polished rod position from 
the torque current of the motor. For this purpose, we use the 
following equation:  
 

                푓푖푡 = 1− ∑ | |
∑ | | × 100          (25) 

 
where, yk (y, …, yN) is the measurement output, ysk (ys1, …, 

ysN) is the model output,  and 푦 is the mean of vector  yk. For 
(25), the value of 100% corresponds to a perfect fit. 

Remembering that for an appropriate evaluation, the torque 
current of the motor (u(k)), present in the validation data set 
(zv), was used as input variable into each estimated model. 
 

VI. RESULTS AND DISCUSSION 
 Table 1 summarizes the main results obtained after the 
estimation of the models. In our experiments, the model M2 
with a number of 43 wavelets function selected by GCV, for 
construction of the wavelet network, was indicated by FPE as 
being the most appropriate means of representing the 
dynamics of the system. Thus, after simulating model output 
푦(푘), applying the torque current of the motor 푢(푘) that is 
present in validation data set zv, into equation (26) 
 
푦(푘) = 푓(푦(푘 − 1), 푦(푘 − 2),  
                                    푢(푘 − 1),푢(푘 − 2),푢(푘 − 3))             (26) 
 
and making a comparison with the measured position present 
in zv, a fit of 90.18% was obtained. However, after an 
exhaustive search to find  a more appropriate model than the 
M2 model, the results  obtained show  that the model M4 in 
which only the regressors y(t-1),y(t-2),y(t-3),u(t-1) and u(t-2) 
are input from the nonlinear part of the NARX model (in other 
words, the regressor u(k-3) are input only of  푥(푘)휃 ), 
afforded a better  fit to the experimental data than  M2 (see 
Fig. 3). 

VII. CONCLUSION 
This paper has outlined an estimate of a pumping unit 

system. The validity of the model was obtained by comparing 
the simulated output with the measured output. The results 
obtained showed that the nonlinear ARX model based on 
wavenet with 34 wavelets outperformed all the other models 
that were estimated, and was sufficient to infer the dynamic 
position of the polished rod from torque current of three-phase 
induction motor, which is given by the sensorless vector AC-
drive. This shows that it is possible to replace the position 
sensor used in the sucker-rod pumping with a nonlinear black-
box model, which can be programmed in a microprocessor 
system.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Polished rod position (a), and torque current of the 
motor (b). 

(a) 

(b) 
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Table I Summary of estimates for NARX models  
 

NARX Model 
 

 
Standard 

Regressors 
[na nb nk] 

 
Nonlinear Regressors 

 
Number of 

wavelets 

 
FPE 

 
Fit (%) 

 
M1 

 
M2 

 
M3 

 
M4 

 
[1 2 1] 

 
[2 3 1] 

 
[3 3 1] 

 
[3 3 1] 

 

 
y(k-1), u(k-1), u(k-2) 

 
y(k-1), y(k-2), u(k-1), u(k-2),u(k-3) 

 
y(k-1),y(t-2),y(k-3),u(k-1),u(k-2),u(k-3) 

 
y(k-1),y(k-2),y(k-3),u(k-1),u(k-2) 

 
110 

 
43 

 
40 

 
34 

 
3.58 10  

 
5.67 10  

 
5.79 10  

 
5.69 10  

 
64.47 

 
90.18 

 
85.95 

 
92.48 
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