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Abstract—Computer simulation of steady state
fluorescence spectra of the ring molecular system is presented
in this paper. The cyclic antenna unit LH2 of the bacterial
photosystem from purple bacterium Rhodopseudomonas
acidophila can be modeled by such system. Three different
models of uncorrelated static disorder are taking into account
in our simulations: Gaussian disorder in local excitation
energies, Gaussian disorder in nearest neighbour transfer
integrals and Gaussian disorder in radial positions of
molecules in the ring. Dynamic disorder, interaction with
a bath, is also included in Markovian approximation. The
cumulant-expansion method of Mukamel et al. is used for
the calculation of spectral responses of the system with
exciton-phonon coupling. The peak position of single ring
spectra and localization of exciton states depend on realization
of static disorder and is also influenced by dynamic disorder.
We discuss different types of exciton dynamics too, that are
coupled to above mentioned effects and compare the results
in that the dynamic disorder is taken into account with the
results without dynamic disorder.

Keywords—Dynamic disorder, exciton states, fluorescence
spectrum, LH2, Mathematica, static disorder.

I. INTRODUCTION

In 1995 the crystal structure of peripheral light-
harvesting complex LH2 from purple bacterium
Rhodopseudomonas acidophila was determined with
high resolution [1], [2]. That is why ultrafast initial
phases of photosynthesis in purple bacteria could been
thoroughly studied in last two decades. LH2 is a highly
symmetric antenna complex in which a very efficient
light collection and excitation transfer through the LH1
units towards the reaction center takes place. LH2
complex consists of nine pigment-protein subunits, each
containing two transmembrane polypeptide helixes
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and three bacteriochlorophylls (BChl). The B850 ring in
LH2 is composed of nine repeating dimer pairs of BChl
molecules with nearly tangentially oriented transition
dipole moments.

Due to the strong interaction between BChl molecules,
an extended Frenkel exciton states model is considered in
our theoretical approach. In spite of extensive investiga-
tion, the role of the protein moiety in governing the dy-
namics of the excited states has not been totally clear yet.
At room temperature the solvent and protein environment
fluctuate with characteristic time scales ranging from
femtoseconds to nanoseconds. The dynamical aspects of
the system are reflected, e.g., in the lineshapes as well
as in the time dependence of the optical properties. To
fully characterize the line shape of an optical transition
and thereby the dynamics of the system, one needs to
know not only the fluctuation amplitude but also the time
scale of each process involved. The observed linewidth
reflect the combined influence of static disorder and
exciton coupling to intermolecular, intramolecular and
solvent nuclear motions. The simplest approach is to
substitute fast fluctuations by dynamic disorder and slow
fluctuations by static disorder.

For zero disorder the exciton manifold features two
non-degenerate and eight pairwise degenerate states. In
the presence of the energetic disorder the degeneracy
of the exciton states is lifted and oscillator strength is
redistributed among the exciton states.

Kumble, Hochstrasser [3] and Nagarajan et al. [4]–
[6] studied static disorder effect on the anisotropy of
fluorescence for LH2 rings. We have extended these
investigations by consideration of dynamic disorder. We
have scrutinized the Redfield equations with a secular
approximation which have been generally used to de-
scribe the system bath interaction with a weak exciton-
bath interaction. We have found that use of secular
approximation distorts true time development of the
exciton transfer. After studying the influence of dynamic
disorder for simple systems (dimer, trimer) [7]–[9] we
added this effect to our model of LH2 ring by using
a quantum master equation in the Markovian [10] and
non-Markovian limits [11].

Break up of the coherent exciton transfer regime is
indicated in the time dependence of the anisotropy of
fluorescence by its drop from 0.7 to 0.4. It has been
shown that non Markovian approach in taking interaction
with the bath into account leads to retardation and slower
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decrease of the anisotropy of fluorescence [11], [12]. In-
fluence of four types of uncorrelated static disorder [12],
[13] and correlated static disorder (elliptical deformation)
[11] was investigated. We also compared models of rings
with different arrangement of optical dipole moments
(radial arrangement) [14]–[16].

Recently we have focused on the modeling of the
steady state fluorescence and absorption spectra for
above mentioned model of LH2 ring [17]. Main goal
of the present paper is the investigation of different
types of exciton dynamics, that are coupled to exciton
states with different degree of localization. The dynamic
disorder - interaction with the phonon bath in Markovian
approximation is taken into account simultaneously with
uncorrelated static disorder.

Present paper is the extension of our contribution [18]
presented on WSEAS conference MACMESE’11. The
rest of the paper is structured as follows. Section II. in-
troduces the ring model with three types of uncorrelated
static disorder and the comulant expansion method of
Mukamel et al. [20], [21], which is used for the calcu-
lation of spectral responses of the system with exciton-
phonon coupling. In Section III. the computational point
of view for our calculations is discussed. The graphically
presented results of our simulations and used units and
parameters could be found in Section IV. In Section V.
some conclusions are drawn.

II. PHYSICAL MODEL

The Hamiltonian of an exciton in the ring coupled to
a bath of harmonic oscillators reads

H = H0
ex +Hph +Hex−ph +Hx

s . (1)

Here the first term,

H0
ex =

∑
m,n(m6=n)

Jmna
†
man, (2)

corresponds to an exciton, e.g. the system without any
disorder (the operator a†m (am) creates (annihilates) an
exciton at site m), Jmn (for m 6= n) is the so-called
transfer integral between sites m and n.
The second term,

Hph =
∑
q

h̄ωqb
†
qbq, (3)

represents phonon bath in the harmonic approximation
(the phonon creation and annihilation operators are de-
noted by b†q and b−q, respectively).
Third term in (1),

Hex−ph =
1√
N

∑
m

∑
q

Gmq h̄ωqa
†
mam(b†q + b−q), (4)

describes exciton-phonon interaction which is assumed to
be site-diagonal and linear in the bath coordinates (the

term Gmq denotes the exciton-phonon coupling constant).
Last term in (1), Hx

s , corresponds to static disorder.
Influence of static disorder is modeled by a Gaussian
distribution:
(I) for the uncorrelated local excitation energy fluctua-

tions δεn with the standard deviation ∆

HI
s =

∑
n

δεna
†
nan, (5)

(II) for the uncorrelated transfer integral fluctuations
δJmn with the standard deviation ∆J (nearest
neighbour approximation)

HII
s =

∑
mn(m6=n)

δJmna
†
man, (6)

(III) for the uncorrelated fluctuations of radial positions
of molecules on the ring δrn with the standard
deviation ∆r

rn = r0 + δrn, (7)

where r0 is the radius of unperturbed ring.
Inside one ring the pure exciton Hamiltonian can be

diagonalized using the wave vector representation with
corresponding delocalized ”Bloch” states α and energies
Eα. Considering homogeneous case with only nearest
neighbour transfer matrix elements

Jmn = J0(δm,n+1 + δm,n−1) (8)

and using Fourier transformed excitonic operators (Bloch
representation)

aα =
∑
n

eiαkn, (9)

where
α =

2π

N
l, l = 0,±1, . . . ,±N

2
, (10)

the simplest exciton Hamiltonian in α - representation
reads

H0
ex =

∑
α

Eαa
†
αaα, (11)

with
Eα = −2J0 cosα. (12)

The cumulant-expansion method of Mukamel et al.
[20], [21] is used for the calculation of spectral responses
of the system with exciton-phonon coupling. Absorption
OD(ω) and steady-state fluorescence FL(ω) spectrum
can be expressed as

OD(ω) = ω
∑
α

d2α×

×Re

∫ ∞
0

dtei(ω−ωα)t−gαααα(t)−Rααααt, (13)

FL(ω) = ω
∑
α

Pαd
2
α×
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×Re

∫ ∞
0

dtei(ω−ωα)t+iλααααt−g∗αααα(t)−Rααααt. (14)

Here
~dα =

∑
n

cαn
~dn (15)

is the dipole strength of eigenstate α, cαn are the expan-
sion coefficients of the eigenstate α in site representation
and Pα is the steady state population of the eigenstate
α. The inverse lifetime of exciton state Rαααα [19] is
given by the elements of Redfield tensor [22] (a sum of
the relaxation rates between exciton states)

Rαααα = −
∑
β 6=α

Rββαα. (16)

The g-function and λ-values in (14) are given by

gαβγδ = −
∫ ∞
−∞

dω

2πω2
Cαβγδ(ω)×

×
[
coth

ω

2kBT
(cosωt− 1)− i(sinωt− ωt)

]
, (17)

λαβγδ = − lim
t→∞

d

dt
Im{gαβγδ(t)} =

=

∫ ∞
−∞

dω

2πω
Cαβγδ(ω). (18)

The matrix of the spectral densities Cαβγδ(ω) in the
eigenstate (exciton) representation reflects one-exciton
states coupling to the manifold of nuclear modes. In what
follows only a diagonal exciton phonon interaction in site
representation is used (see (4)), i.e., only fluctuations of
the pigment site energies are assumed and the restriction
to the completely uncorrelated dynamical disorder is
applied. In such case each site (i.e. each chromophore)
has its own bath completely uncoupled from the baths
of the other sites. Furthermore, it is assumed that these
independent baths have identical properties [12], [23],
[24]

Cmnm′n′(ω) = δmnδmm′δnn′C(ω). (19)

After transformation to exciton representation we have

Cαβγδ(ω) =
∑
n

cαnc
β
nc
γ
nc
δ
nC(ω). (20)

Several models of spectral density of the bath are used
in literature [19], [25], [26]. In our present investigation
we have used the model of Kühn and May [25]

C(ω) = Θ(ω)j0
ω2

2ω3
c

e−ω/ωc (21)

which has its maximum at 2ωc.

Delocalization of the exciton states contributing to the
steady state FL spectrum can be characterized by the
thermally averaged participation ratio 〈PR〉, which is
given by

〈PR〉 =

∑
α PRα e

− Eα
kBT∑

α e
− Eα
kBT

, (22)

with

PRα =
N∑
n=1

|cαn|4. (23)

Time evolution of exciton density matrix ραβ is gov-
erned by Redfield equation [22],

∂ραβ(t)

∂t
= −iωαβραβ(t) +

∑
γδ

Rαβγδργδ(t), (24)

which is equivalent to Čápek’s equation [12]. Exciton
density matrix in site representation is given by

ρmn =
∑
αβ

cαnc
β
nραβ. (25)

III. COMPUTATIONAL POINT OF VIEW

To have steady state fluorescence spectrum FL(ω) and
absorption spectrum OD(ω), it is necessary to calculate
single ring FL(ω) spectrum and OD(ω) spectrum for
large number of different static disorder realizations
created by random number generator. Finally these re-
sults have to be averaged over all realizations of static
disorder. Time evolution of exciton density matrix has to
be calculate also for each realization of static disorder.
That is why it was necessary to put through numerical
integrations for each realization of static disorder (see
(14)).

For the most of our calculations the software pack-
age Mathematica [27] was used. This package is very
convenient and has very wide range of applications in
different areas of research [28]–[30] not only for sym-
bolic calculations [31] which are needed for expression
of all required quantities, but it can be used also for
numerical ones [32]. That is why the software package
Mathematica was used by us as for symbolic calculations
as for numerical integrations and also for final averaging
of results over all realizations of static disorder.

As concerns the time development of our system, for
the solution of the Redfield equation we have used the
program written in Fortran and standard Runge-Kutta
method.

IV. RESULTS

Three above mentioned types of uncorrelated static
disorder have been taken into account in our simulations
simultaneously with dynamic disorder in Markovian ap-
proximation. Dimensionless energies normalized to the
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Fig. 1. Resulting absorption OD(ω) (dashed lines) and steady-state
fluorescence FL(ω) spectra (solid lines) of LH2 at room temperature
kT = 0.5 J0 for three different types and three differen strengths of
static disorder, averaged over 2000 realizations: First row - Gaussian
static uncorrelated disorder in local excitation energies δε, second row
- Gaussian uncorrelated static disorder in nearest neighbour transfer
integrals δJ , third row - Gaussian uncorrelated static disorder in radial
positions of molecules δr. Experimental fluorescence profile averaged
in time and over the particles for room temperature is also displayed
(points).

transfer integral J12 = J0 and dimensionless time τ have
been used. Estimation of J0 varies in literature between

Fig. 2. Peak position distributions of calculated steady-state single
ring fluorescence spectra FL(ω) of LH2 at room temperature kT =
0.5 J0 for 2000 realizations of static disorder for three different types
and three different strengths of static disorder: First row - Gaussian
uncorrelated static disorder in local excitation energies δε, second row
- Gaussian uncorrelated static disorder in nearest neighbour transfer
integrals δJ , third row - Gaussian uncorrelated static disorder in radial
positions of molecules δr.

250 cm−1 and 400 cm−1. For these extreme values of
J0 our time unit (τ = 1) corresponds to 21.2 fs or 13.3
fs.
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Fig. 3. The distributions of PRα values (α = 1, . . . , 18) as a function of FL spectrum peak position at room temperature kT = 0.5 J0
calculated for 2000 realizations of Gaussian uncorrelated static disorder in local excitation energies δε, ∆ = 0.6 J0.

Fig. 4. The distributions of PRα values (α = 1, . . . , 18) as a function of FL spectrum peak position at room temperature kT = 0.5 J0
calculated for 2000 realizations of Gaussian uncorrelated static disorder in nearest neighbour transfer integrals δJmn, ∆J = 0.30 J0.
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Fig. 5. The distributions of PRα values (α = 1, . . . , 18) as a function of FL spectrum peak position at room temperature kT = 0.5 J0
calculated for 2000 realizations of Gaussian uncorrelated static disorder in radial positions of molecules on the ring δrn, ∆r = 0.12 r0.

Fig. 6. The distribution of 〈PR〉 values as a function of FL
spectrum peak position at room temperature kT = 0.5 J0 calculated
for 2000 realizations of Gaussian uncorrelated static disorder: in
local excitation energies δε (first row), in nearest neighbour transfer
integrals δJ (second row), in radial positions of molecules δr (third
row). Columns: three different strengths of static disorder.

Contrary to Novoderezhkin et al. [19] different model
of spectral density (the model of Kühn and May [12])
has been used. In agreement with our previous results
[33] we have used the strength of dynamic disorder j0 =
0.4 J0 and cut-off frequency ωc = 0.212 J0 (see (21)).

The strengths of individual types of uncorrelated static
disorder have been taken in agreement with [34]. For
each type of static disorder the simulations have been
done for three values of the static disorder strength:
(I) ∆ = 0.1, 0.3, 0.6 J0,

(II) ∆J = 0.05, 0.15, 0.30 J0,
(III) ∆r = 0.02, 0.06, 0.12 r0, where r0 is the radius of

unperturbed ring.
Resulting absorption OD(ω) and steady state fluores-

cence spectra FL(ω) for room temperature kT = 0.5 J0
averaged over 2000 realizations of each static disorder
type and strength can be seen in Fig. 1. Comparison
of calculated FL spectra with experimental FL profile
averaged in time and over the particles [19] is also
displayed in Fig. 1.

Fig. 2 presents the peak positions distributions of
calculated steady state single ring fluorescence spectra
at room temperature kT = 0.5 J0 for 2000 realizations
of static disorder. The distributions are shown for three
types and three strengths of static disorder mentioned
above.

The distributions of the participation ratios PRα for
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Fig. 7. The diagonal exciton density matrix elements in the site
representation ρnn at room temperature (kT = 0.5J0) are shown as
a function of time τ for Gaussian uncorrelated static disorder type
(I) - fluctuations of local excitation energies δεn. First and second
row shows the coherent dynamics (without dynamic disorder) for
the realizations of static disorder with lowest (first row) and highest
(second row) 〈PR〉 values. The third and fourth row shows the same
but with the dynamic disorder effect taking into account. Columns:
three different strengths of static disorder.

each of eighteen eigenstates α can be seen in Fig. 3 -
Fig. 5 for highest strength of each static disorder type
(∆ = 0.6J0, ∆J = 0.30 J0, ∆r = 0.12 r0).

Fig. 6 shows the values of thermally averaged partic-
ipation ratio 〈PR〉 as a function of FL spectrum peak
position at room temperature kT = 0.5 J0 calculated for
2000 realizations of the disorder.

Dynamics of the diagonal exciton density matrix ele-
ments in site representation ρnn is shown in Fig. 7 - 9
for three above mentioned static disorder types. Initial
density matrix ραβ(t = 0) is chosen by us corresponding
to coherent wavepacket with steady state populations Pα
and arbitrary fixed phases ϕα [19],

ραβ =
√
PαPβ ei(ϕα−ϕβ), (26)

and
ραα = Pα ∼ e−

εα
kT . (27)

Fig. 8. The diagonal exciton density matrix elements in the site
representation ρnn at room temperature (kT = 0.5J0) are shown as
a function of time τ for Gaussian uncorrelated static disorder type (II)
- fluctuations of nearest neighbour transfer integrals δJmnn. First and
second row shows the coherent dynamics (without dynamic disorder)
for the realizations of static disorder with lowest (first row) and
highest (second row) 〈PR〉 values. The third and fourth row shows
the same but with the dynamic disorder effect taking into account.
Columns: three different strengths of static disorder.

Timescale τ ∈ 〈0; 70〉 corresponds to t ∈ (0; 1.4 ps)
or (0; 1 ps) for limit values of J0 mentioned above.
Initial exciton density matrix is defined as follows: initial
populations in eigenstate representation (ραα) correspond
to a thermally equilibrated wavepacket at room temper-
ature (kT = 0.5 J0), initial coherences (ραβ , α 6= β)
have arbitrary fixed phases. Contrary to [19] the dynamic
disorder have been taken into account in our simulations.
First and second rows of Fig. 7 - 9 show the coherent
dynamics (without dynamic disorder) for the realizations
of static disorder with lowest and highest 〈PR〉 values.
The third and fourth rows show the same but with the
dynamic disorder effect taking into account.

V. CONCLUSION

Software package Mathematica has been found by us
very useful for the simulations of the spectra of molecular
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Fig. 9. The diagonal exciton density matrix elements in the site
representation ρnn at room temperature (kT = 0.5J0) are shown as
a function of time τ for Gaussian uncorrelated static disorder type
(III) - fluctuations of radial positions of molecules δrn on the ring.
First and second row shows the coherent dynamics (without dynamic
disorder) for the realizations of static disorder with lowest (first row)
and highest (second row) 〈PR〉 values. The third and fourth row
shows the same but with the dynamic disorder effect taking into
account. Columns: three different strengths of static disorder.

rings. From the comparison of our simulated FL spectra
with experimental data (Fig. 1) the values of the inter-
pigment interaction energy J0 and unperturbed transition
energy from the ground state ∆E0 were obtained [35].

The fluorescence spectra shift to higher wavelengths
(to lower energies) for increasing static disorder (it can
be seen from Fig. 1). This shift is the smallest in case
of static disorder in radial positions of molecules (III).

In Fig. 1 the shift of fluorescence spectra peak
position to the higher wavelength in comparison with
absorption spectra peak position is also visible. This shift
is highest (8 nm) for the static disorder type (III).

The differences in localization of eigenstates α for
different types of static disorder we can see in Fig. 3 -
5. In case of the static disorder type (III), the dispersions
of PRα values are almost the same for all eigenstates α
(Fig. 5). However, in case of static disorder types (I) and

(II), larger differences in dispersion are visible (Fig. 3
and 4). For these types of static disorder the dispersions
are much larger for the lowest and highest eigenstates in
comparison with intermediate ones.

From Figure 6 it can be seen growing of 〈PR〉
values in case of higher strength of static disorder. It
corresponds to more localized exciton states. Shift to
lower wavelengths is evident for the static disorder type
(III) in comparison with other static disorder types.

From Fig. 7 - 9 no significant difference in exciton
density matrix dynamics for different types of static
disorder is visible. Different degree of localization 〈PR〉
produce different types of coherent excitation dynamics.
The population distribution for small 〈PR〉 is more or
less uniform, i.e., excitation can be found on any part of
the ring. The wavepacket moves around the ring in this
case. On the other hand, higher values of 〈PR〉 lead to
higher localization of excitation on a smaller group of
pigments or even on a single pigment. Excitation can be
even totally localized on a single molecule without any
migration to the other sites in case of highest 〈PR〉. If
the dynamic disorder is taken into account, oscillations
in exciton dynamics are suppressed. The dynamics can
be characterized by relaxation.
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