
 

 

  

Abstract— We present in this paper a comparative study between 

two most popular control strategies of electrical machines: field 
oriented control (FOC) and direct torque control (DTC) for 
controlling a Dual Three Phase Induction Motor. The comparison is 
based on several criteria including: static and dynamic performance, 
structure and implementation complexity, decoupling, torque and 
current ripple, etc... Also, we present in this study the advantages and 
disadvantages of each control scheme, the best is the one that better 
meets the requirements.   
 

Keywords— Dual Three Phase Induction Motor (DTPIM), Field 

Oriented Control (FOC), Direct Torque Control (DTC).  
 

I. INTRODUCTION 

n the industrial applications that high reliability is 

demanded, multi-phase induction machine instead of 

traditional three-phase induction machine is used. A common 

type of multiphase machine is the dual three phase induction 

machine (DTPIM),is also known as the six phase induction 

machine, these machines have been used in many applications 

(pumps, fans, compressors, rolling mills, cement mills, mine 

hoists …[1]) for their advantages in power segmentation, 

reliability, and minimized torque pulsations. Such segmented 

structures are very attractive for high-power applications, since 

they allow the use of lower rating power electronic devices at a 

switching frequency higher than the one usually used in three-

phase ac machine drives [2].    

In the last decade high performance drives based on the 
spatial position of the flux and on space vector theory have 
been developed and industrially applied. Nowadays two 
groups of usually applied control schemes can be 
distinguished: Field Oriented Control (FOC) and Direct 
Torque Control (DTC) [3].   
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The main difficulty in the asynchronous machine control 
resides in the fact that complex coupling exists between the 
field and the torque. The field oriented control assures 
decoupling between these variables, and it is used to 
simplify the speed control of induction motors (IMs), so 
they can be controlled like a separately excited direct 
current (DC) machine [4], [5]. 

The direct torque control (DTC) method was proposed in 
the middle of 1980 by I.Takahashi [6], this method has 
become one of the high performance control strategies for 
AC machine to provide a very fast torque and flux control. 
The name direct torque control is derived by the fact that, 
on the basis of the errors between the reference and the 
estimated values of torque and flux, it is possible to 
directly control the inverter states in order to reduce the 
torque and flux errors within the prefixed band limits [7], 
[8].  

This paper is organized in six sections. The DTPIM 
model is presented in the next section. The control method 
by FOC and DTC will be discussed in section three and 
four. In the fifth and sixth section we present the 
simulation results and comparison of two control schemes. 
Finally, a general conclusion summaries this work. The 
simulation results are obtained by using Matlab/Simulink. 

II. DTPIM MODEL 

                       

     A schematic of the stator and rotor windings for a machine 

dual three phase is given in Fig. 1. The six stator phases are 

divided into two wyes-connected three phase sets labeled As1, 

Bs1, Cs1 and As2, Bs2, Cs2 whose magnetic axes are displaced by 

an angle α=30°. The windings of each three phase set are 

uniformly distributed and have axes that are displaced 120° 

apart. The three phase rotor windings Ar, Br, Cr are also 

sinusoidally distributed and have axes that are displaced apart 

by 120° [9] [10].     

The following assumptions are made: [4], [11]: 
- Motor windings are sinusoidally distributed;  
- The two stars have same parameters; 
- The magnetic saturation, the mutual leakage   inductances 

and the core losses are negligible; 
- Flux path is linear. 
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The voltage equations of the dual star induction machine 

are as follow [12] [13]: 
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Where:  
 Rsa1 = Rsb1 = Rsc1 = Rs1: Stator resistance 1.    
 Rsa2 = Rsb2 = Rsc2 = Rs2: Stator resistance 2.    
 Rra = Rrb = Rrc = Rr: Rotor resistance. 
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The expressions for stator and rotor flux are [12]:   
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Where:  
[Ls1s1]: Inductance matrix of the star 1. 
[Ls2s2]: Inductance matrix of the star 2. 

[Lrr]: Inductance matrix of the rotor. 

[Ls1s2]: Mutual inductance matrix between star 1 and star 2. 

[Ls2s1]: Mutual inductance matrix between star 2 and star 1. 

[Ls1r]: Mutual inductance matrix between star 1 and rotor. 

[Ls2r]: Mutual inductance matrix between star 2 and rotor. 

[Lrs1]: Mutual inductance matrix between rotor and star 1. 

[Lrs2]: Mutual inductance matrix between rotor and star 2. 
 

The expression of the electromagnetic torque is then as follows 
[1] [12] [14]: 
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The Park model of the dual star induction machine in the 
references frame at the rotating field (d, q), is defined by the 
following equations system (6) [9]. 
The figure 2 represents the model of the DSIM in the Park 
frame. 
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Where:  
 

 

 

Fig. 1 Windings of the dual star induction machine 
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Lm: Cyclic mutual inductance between stator 1, stator 2 and 

rotor. 

The mechanical equation is given by: 
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III. VOLTAGE SOURCE INVERTER MODELING 

             

                                                     
The voltage source inverter (VSI) is a static converter 

constituted by switching cells generally with transistors or 
thyristors GTO for high powers (Fig.3). The operating 
principle can be expressed by imposing on the machine the 
voltages with variable amplitude and frequency starting from a 
standard network 220/380v-50Hz [15].Voltages at load neutral 
point can be given by the following expression [16]:   
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This modeling for the two converters that feed the DTPIM. 

 

 

 

 

 

 

 

 

 

 

 

 

IV. FIELD ORIENTED CONTROL 

             

                                                     
The objective of space vector control is to assimilate the 

operating mode of the asynchronous machine at the one of 
a DC machine with separated excitation, by decoupling the 
torque and the flux control. The FOC consists in making 

Φrq=0 while the rotor direct flux Φrd converges to the 

reference Φr
* [4], [16]. In the Direct Field Oriented 

Control (Modified FOC), the rotor flux modulus will be 

controlled by feedback. An estimator of rotor flux Φr is 
implanted from currents measurements (isd and isq), and 

rotor currents pulsation ωr imposed on the machine (Fig.4).    
 

By applying this principle (Φrq=0 and Φrd =Φr
*) to 

equations (6) (7) and (9), the finals expressions of the 
electromagnetic torque and slip speed are:    
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The stators voltage equations are:    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Voltage Source Inverter scheme 
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Fig. 4 Direct method speed regulation 
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The torque expression shows that the reference fluxes and 
stator currents in quadrate are not perfectly independent, for 
this, it is necessary to decouple torque and flux control of this 
machine by introducing new variables: 
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   The equation system (14) shows that stator voltages (Vs1d, 

Vs1q, Vs2d, Vs2q) are directly related to stator currents (Is1d, Is1q, 

Is2d, Is2q). To compensate the error introduced at decoupling 
time, the voltage references (Vs1d

*, Vs2d
*, Vs1q

*, Vs2q
*) at 

constant flux are given by:  
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For a perfect decoupling, we add stator currents regulation 
loops (Is1d, Is1q, Is2d, Is2q) and we obtain at their output stator 
voltages (Vs1d, Vs1q, Vs2d, Vs2q).The decoupling bloc scheme in 
voltage modified (Modified Field Oriented Control) is given in 
Fig.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

V. DIRECT TORQUE CONTROL 
 

The Direct Torque Control (DTC) method allows direct and 
independent electromagnetic torque and flux control, selecting 
an optimal switching vector [17]. The Fig.6 shows a block 
diagram of the DTC scheme applied to the DTPIM. The 

reference values of flux (Φs
*) and torque (Tem

*) are compared 
to their actual values and the resultant errors are fed into a two 
level hysteresis comparator for the flux and three level 
hysteresis comparator for the torque, who allows controlling 
the motor in the two directions of rotation (Fig.7). 

  

 

 

 

 

 

 

 

 

 

 

 
  
 

 

 

 

 

 

 

 

Fig. 7 Hysteresis comparator, (a): three level hysteresis comparator for 
the torque, (b): two level hysteresis comparator for the flux 
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Fig. 5 Decoupling bloc in voltage modified 
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For the stator flux vector laying in sector 1 (Fig.8), in order 

to increase its magnitude, the voltage vectors V1, V2, and V6 
can be selected. Conversely, a decrease can be obtained by 
selecting V3, V4 and V5. However, to increase the 
electromagnetic torque the voltage vectors V2, V3 and V4 can 

be selected and a decrease can be obtained by the vectors: V1, 
V5 and V6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stator flux and the electromagnetic torque expression are 
given by [18]: 
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Kc: constant depending on the parameters of the machine. 
γ: Angle between the two vectors stator and rotor flux. 
 

The application of zero voltage vectors (V0 and V7) stops 

the rotation of the stator flux vector Φs. However, the rotor 

flux Φr continues its evolution and try to catch up the stator 

flux. Thus, the angle γ between stator and rotor flux will 

decrease and the electromagnetic torque decreases slowly.  

 
 

 VI.SWITCHING STRATEGY 
 

The switching table allows to select the appropriate inverter 

switching state according to the state of hysteresis comparators 

of flux (cflx) and torque (ccpl) and the sector where is the 

stator vector flux (Φs) in the plan (α, β), in order to maintain 

the magnitude of stator flux and electromagnetic torque inside 

the hysteresis bands. The above consideration allows 

construction of the switching table as presented in Table I. 

 

 

 

 

 

 

 

 

 

 

 

 

VII.SIMULATION RESULTS   

The simulation results of Direct Field Oriented Control 
(DFOC) and Direct Torque Control of Dual Three Phase 
Induction Motor are given in Fig.9 and Fig.10.  

 

 

 

 

 

 

 

 

 

Fig. 8 Voltage vector selection 
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Fig. 6 Block diagram of Direct Torque Control for DTPIM 
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The table II summaries the principal differences between Field 
Oriented Control (FOC) and Direct Torque Control (DTC) 
[18], [19], [20].   
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Fig. 10 DTC of DTPIM with load torque (10 N.m) between [1.5 3] s 
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VII.CONCLUSION 
 
    In this paper, the principle and a several characteristics of 
Field Oriented and Direct Torque Control schemes for Dual 
Three Phase Induction Motor drive are studied by simulation 
in order to determinate the main advantages and drawbacks of 
each control and to make a comparison between them.  
 

    The field oriented control (FOC) is based on an analogy to 
the separately excited DC motor, where the flux and torque 
can be controlled independently. In this control scheme, the 
torque is controlled indirectly by the stator current component. 
 

    The Direct Torque Control (DTC) allows direct and 
independent electromagnetic torque and flux control, selecting 
an optimal switching vector, making possible fast torque 
response, low inverter switching frequency and low harmonic 
losses. However, two major problems associated with DTC 
drive: electromagnetic torque ripple and variable switching 
frequency. 
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Table II. Comparison of FOC and DTC schemes 

 
 FOC DTC 

Decoupling 
Require 

orientation 
Natural 

PWM Required Not Required 

Coordinates 
reference frame 

Reference 
frame (d_q) 

Reference 
frame (α_β) 

Controlled 
variables 

Torque and 
rotor flux 

Torque and 
stator flux 

Regulators 
Three stator 
current PI 
regulators 

Two Hysteresis 
regulator 

(torque and 
stator flux) 

Switching 
frequency 

Constant Variable 

Switching losses Low higher 

Torque response Good Very good 

Torque and Flux 
control 

Indirectly 
controlled by 

stator 
currents 

Directly 
controlled 

  Flux dynamic Slow Fast 

Implementation 
complexity 

High 
complexity 

Less 
complexity 
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Table I. DTPIM Parameters 

 
Pn 

[kw] 
4.5 

Rr   

[Ω] 
2 .12 

J 
[kg.m²] 

0.0625 

Vn     
[V] 

220 
Ls1 

[H] 
0.022 

Kf 
[Nms/r] 

0.001 

In [A] 6.5 
Ls2 

[H] 
0.022 f [Hz] 50 

Rs1      

[ Ω] 
3.72 

Lr 
[H] 

0.006 p 1 

Rs2      

[ Ω] 
3.72  

Lm 

[H] 
0.367 Cos φ 0.8 
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