
 

 

 
Abstract— A new approach to detection of the existence 

of unwanted odors after spraying the smart home and 

vehicular environment with perfumes is considered in the 

work. The approach is based on registering the response 

curve of an array of sensors to perfumes and to odors such 

as herbs, then using the proposed intersection algorithm to 

uncover the ability of the perfume to mask specific odors. 

Three odors (herbs) and three perfumes are tried and 

resulted in the ability of perfumes to mask two of the 

herbs, one deeper than the other. The response curve 

intersection technique (RCIT) provides the ability to 

unmask unwanted odor existence, thus forms the heart of 

the unmasking odor algorithms (UOA). Mathematical 

equations are used to prove the concept with digital logic is 

further used to support the presented algorithm. The 

research found that using the proposed technique, an odor 

masked by spraying of perfumes can be unmasked using 

the RCIT as the case in herb 3 presented in the work. The 

work also showed the unique curve shape for both 

perfumes and herbs and the fact that some herbs can be 

easily masked and hidden within the response of perfumes. 

In addition, it is shown that the perfumes response is much 

more complex compared to herbs. 

 

Keywords— Odor Detection, Odor Classification, 

Chemical Sensors, Smart Vehicles, Smart Homes, E-Nose.  

I. INTRODUCTION 
MELL is a common ability possessed by many 

organisms, which is very useful if replicated in artificial 
systems using sensing devices, by combining biologically 
based engineering elements, such as chemical and gas sensors. 
Thus, enabling applications in many areas such as medical, 
environmental, military, industrial, and recently automotive 
and smart city applications. The mammalian olfactory system, 
which is highly sophisticated, is the most sensitive odor 
detector. Due to the limitations of traditional instrumental 
techniques in the field of odors, odor measuring procedures 

 
 

now rely on artificial sensor-based detectors. [1], [2], [3], [4], 
[5]. 

 
      The development of a smelling system that mimicked 

the mammalian biological system, in particular the human 
olfactory, was aided by the availability of materials with 
chemical-electronic properties. These sensor-based device can 
detect, extract, and distinguish between a wide range of basic 
and complicated scents. The used array of sensors response in 
a similar manner to olfactory receptors present in the human 
olfactory biological system, thus provide quality information 
regarding odors and their patterns with ability to classify them 
into categories [6], [7], [8], [9], [10]. 

 
In addition, data manipulation techniques are used to 

process incoming chemical-electronic signals, similar to how 
data is processed in biological systems. Association and 
correlation are used to achieve the goal of odor recognition. A 
wide range of competing sensor technologies with repeatable 
and reversible responses, ranging from polymers to metal 
oxide sensors are available for such applications. 

 
     Odors, and chemicals carry important information 

regarded as a fingerprint of each odor or chemical and its 
effect on the surroundings, other odors and chemicals. Such 
information should be extracted carefully and accurately using 
different sensors with good sensitivity, repeatability, 
selectivity, and accuracy.  Such sensors are used are receptors 
that react to odor vapors, gases, and general chemicals in a 
process representing artificial olfaction or digital olfaction 
with the support of electronic sensors such as chemical 
resistors that gives the ability to classify odors, aromas, 
chemicals, gases and gas their mixtures.  

 
There is a continuous interest in employing the mechanisms 

of the olfactory system in instruments capable of accurate and 
reliable odors detection and classification.  Electronic Nose 
(E-nose) does provide such odor measuring system, which can 
mimic the human mechanism of smelling.  
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E-nose proved that it is capable of detecting smell 
effectively as it comprises chemical sensors(s), with 
applications in wide range of industries ranging from food, 
environment, biomedical, to cosmetics, transportation and 
military applications [11], [12], [13], [14].  

 
E-nose is designed to recognize odors, gases, and aromas in 

a similar manner to human nose. Advantages of the E-nose are 
its capability to continuously sample odors without getting 
affected by human conditions and its ability to detect odorless 
chemicals and gases, by identifying a unique pattern or finger 
print for the detect substance. The E-Nose device built 
operates on the principles of voltage and electrical resistance 
change in response to detection of odor molecules. The signal 
produced as a result of voltage changes is processed through 
specific signal processing algorithms with pattern recognition 
capabilities. Examples of theses algorithms and techniques are: 
Genetic Algorithm, Neural Networks, Principal Component 
analysis, Linear Discrimination Analysis, Support Vector 
Machine, K-Nearest Neighbor Classifier, among others [15], 
[16], [17], [18], [19].   

 
      E-nose system comprises components for sensing and 

pattern recognition. The sensing system usually contains array 
of sensing elements, where they are subjected to odors and 
chemicals, which result in a specific response or signature that 
characterizes the detected components forming each element. 
Pattern recognition is needed to classify detected odors. 

 
     The main applications of artificial or digital olfaction 

are: 
 
i. Quality of fresh and processed food, drinks and flavors, 

fruits and vegetables, meat and fish. 
 
ii. Smart home applications with odor and aroma sensors 

placed round the house for air quality, food quality. 
 
iii. Automotive applications, where Odor sensing 

technology in vehicles can assist in detecting bad smells inside 
the vehicle to helping in failure recognition through detecting 
odors for excess fuel, electrical wiring overheat, driver and 
passengers health problems among others.  

 
      Odor molecules are produced due to activity and energy 

variation, such as temperature, humidity, agitation. Each odor 
can be captured and detected by an array of odor, gas or 
chemical sensors. Most of the time people spray perfumes to 
mask odors, which interact with the present odor and produce 
a mixture of both.  

       
      In this paper, a new approach is proposed to extend odor 

sensing applications in the smart home environment and within 
the vehicular environment to enable identification of unwanted 
odors as a key to enable healthier living and cleaner vehicular 

environment irrespective of the existence of other odors that 
could modulate or mask the odor detection using a new 
approach of curve intersection to enable odor extraction from 
the surroundings, which is usually masked by the spray of 
perfumes. The method is tested on herbs and perfumes that are 
used to spray homes and vehicles. 

 
The rest of this paper is divided as follows: Methodology, 
Results and Discussion, Conclusions, References. 

II. METHODOLOGY 
The main idea of this work is based on the hypothesis that to 

use the chemical sensor response curve in terms of shape 
functions and response times to in order to establish a process 
by which masking perfumes as a function of specific odors 
such as herbs can be determined through intersection of 
response curves. 

 
An array of TGS sensors (TGS 822, TGS 813), are used in 

this work. The sensors are produced by Figaro and shown in 
Figure 1. 

                          
Figure 1. Sensing Devices by Figaro 

 
The sensor array enables wider selectivity and more reliable 

odor feature extraction compared to a single sensor, with 
ability to pattern map more odors. The used TGS sensors uses 
Tim Oxide doped material (SnO2), where their conductivity 
changes dependent on the presence and type of odor, chemical, 
gas, or volatile compound there are subjected to. For stability 
and better detection, the sensors have printed heaters in their 
structure [20], [21]. 

 
TGS 822 is very sensitive to vapors of organic solvents and 

volatile compounds with ability to detect combustible gases, 
and operates reliably as a general purpose sensor. TGS 813 is 
very sensitive to methane, propane, butane in addition to 
combustible gases and works effectively as a general purpose 
sensor [22], [23]. 

 
      The implemented RCIT in UOA algorithm is shown in 

Figure 2. The algorithm acquires odor and perfume responses 
and apply signal conditioning to the obtained signals. An 
intersection routine is applied to the sensors outputs and level 
of masking is deduced based on application of logical 
operators.  
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Figure 2. Algorithm used to determine effect of perfume masking on 
odors. 

III. RESULTS AND DISCUSSION  
Tables I and II present initial results detecting herbs and 

perfumes where each value in the tables is a result of 
summation of 10 sampling points.  

 
TABLE I 

RESPONSE OF ODOR SENSING SYSTEM TO HERBS 
Sensing System  Response (Volts) 

Exposure Time (Sec.) Odor (1)  Odor (2)  
 

Odor (3) 
 

 

0.0 0.7 2.7 2.2  
1.0 1.3 3.4 2.9  
2.0 1.6 3.6 3.2  
3.0 1.9 3.8 3.4  
4.0 2.0 3.9 3.5  
5.0 2.2 4.0 3.6  
6.0 2.3 4.1 3.7  
7.0 2.4 4.2 3.8  
8.0 2.6 4.3 3.8  
9.0 2.7 4.3   

10.0 2.7    

     

 
   TABLE II 

RESPONSE OF ODOR SENSING SYSTEM TO PERFUMES  
E-Nose  Response (Volts) 

Exposure Time (Sec.) Perfume (1) Perfume (2) 
 

Perfume (3) 
 

 

0.0 1.8 2.0 1.5  
1.0 2.3 2.8 2.5  
2.0 3.3 4.0 3.0  
3.0 5.8 7.0 5.5  
4.0 7.0 7.2 6.7  
5.0 7.0 7.2 6.7  

     

 
 
Figures 3 to 8 present plots for the obtained data for herbs 

and perfumes. The slowdown in response for both herbs and 

perfumes and in general for any chemicals, gases, and odors, is 
a function of the sensitivity and rate of adsorption-desorption 
of odor molecules. In addition, such curve response rate is also 
dependent on the detection layer thickness (deposited film 
thickness), type and rate of extraction of odor smell out of the 
detection environment. In addition, equivalent circuit 
representation shows capacitive behavior, thus, speed of 
response and recovery is affected. When the response curve 
starts to reach steady-state, it indicates that saturation point is 
reached as the available surface area for chemical reaction gets 
smaller, until molecular extraction is carried out, then rate of 
response will increase again [24], [25], [26].    
 

 

 

 

 

 

 

 

 

 

 

Figure 3. Sensing Systems Response to Herbs. 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. Sensing Systems Response to Herbs. 
 

 
 
 

 

 

 

 

 

 

 

 

Figure 5. Sensing Systems Response to Herbs. 
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Figure 6. Sensing Systems Response to Perfumes. 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Sensing Systems Response to Perfumes. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Sensing Systems Response to Perfumes. 

 
      Figures 3 to 5 can be represented by equations (1) to (3). 

Thus, the general used herb response in relation to time can be 
generalized as in equation (4). 

 
 
 
 
 

 

 

 

 
Where; 
T: Response Time 
K: Herb Sample Number 
 
      Figures 6 to 8 can be represented by equations (5) to (7) 

in the first part and equations (9) to (12) in the second part of 

the response curve. 
 

 
 
 
 

 
 
Thus, the general perfume response (Part1) in relation to 

time can be generalized as in equation (8). 
 

 

 
      Where; 
T: Response Time 
j: Perfume Sample Number 

 

 
 
 
 
 
 

 
Thus, the general perfume response (Part2) in relation to 

time can be generalized as in equation (12). 
 

 
 
Where; 
T: Response Time 
q: Perfume Sample Number 
 
      From Equations (1) to (12), Figures (9) to (11) 
 
1. Herbs curves follow a polynomial trend, whilst the 

perfumes curves have a hybrid or combined exponential 
(part1)-polynomial (part 2) trend. 

 
2. Herb1 does not intersect with any of the perfumes 

present, which indicates that no common or shared 
features are between herb 1 and the three present 
perfumes in the spatial and temporal plane. 

 
3. Herbs 2 and 3 intersects with the three present perfumes 

at the following points: 
 
I. Herb 2:  

 
 
 

 

II. Herb 3 
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From equations (13) and (14), the earliest intersection 

between herbs 2 and 3 and the three perfumes present in the 
same spatial and temporal plane, occurs between Herb 2 and 
perfume 2.   

 
4. Intersection between herbs 2 and 3 and the three 

perfumes occurs between the all polynomial curve of the 
Herbs and the exponential part of the perfumes (part1). 
Thus indicating common features between the Herbs and 
the perfumes, whereby features of the herbs are masked 
by the presence of perfumes and through intersection can 
be unmasked. Thus, at the intersection point we can 
equate equation (4) to equation (8). 

 
5. There is a common shape function (polynomial) shifted in 

time between perfumes and herbs. When intersection 
occurs, it shows the effect of interaction between Herbs 
and perfumes as the exponential part of the perfumes 
intersects with the polynomial part of the herbs, rather 
than an expected change in the shape function and/ or 
further shift in the polynomial part of the Herbs to match 
the perfumes polynomial part. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Correlative Sensing System Response to Odor 1 (Herb 1) 
and Perfumes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Correlative Sensing System Response to Odor 2 (Herb 2) 
and Perfumes. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Correlative Sensing System Response to Odor 3 (Herb 3) 

and Perfumes. 
 
Table III presents the intersection status between the 

unwanted herbs and sprayed perfumes, where the type of 
intersection between herbs and perfumes is identified either 
exponential or polynomial, depending on the status of the 
perfume curve as it possess both types of functions. 
 

TABLE III 
INTERSECTIONS BETWEEN HERBS AND PERFUMES 
 Intersection Type 

Odor Perfume 1 Perfume2 Perfume3 
 Exp. Poly. Exp. Poly. Exp.  Poly. 

Herb 1 No No No No No  No 

Herb 2 No Yes Yes No No  Yes 

Herb 3 Yes No Yes No No  Yes 

        

 
Table III presents two cases of perfumes that can mask 

herbs: 
 
I. Spatial and Temporal Shifting of odor characterisitics, as 

the polynomial described herb response intersects with 
the perfume at the exponential part of the perfume 
response.  

 
II. Functional Change in the in the herb response curve 

(deeper masking by perfume) leading to intersection only 
at the polynomial part of the perfumes response. 

 
TABLE IV 

INTERSECTIONS BETWEEN HERBS AND PERFUMES-LOGICAL REPRESENTATION 
 Intersection Type 

Odor Perfume 1 Perfume2 Perfume3 
 Exp. Poly. Exp. Poly. Exp.  Poly. 

Herb 1 0 0 0 0 0  0 

Herb 2 0 1 1 0 0  1 

Herb 3 1 0 1 0 0  1 

        

 
    Based on Tables III, the following logical relationships 

can be established: 
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      Expressions (15) to (23) uncover the functional (logical) 

relationship between Herbs and Perfumes with all possible 
permutations. Based on the expressions (15) to (23), Table IV 
is obtained, which provides the decision making base for the 
presence and influence of perfumes over detected odors. From 
Table IV, the following is deduced: 

 
 
1. Herb1 is not masked by any of the perfumes used, and  

of different composition than herb and herb 3. 
 
2. Herb 2 is masked much deeper by perfumes 1 and 3 than 

perfume 2 and can be detected through intersection. 
 
3. Herb 3 is masked much deeper by perfume 3 than 

perfumes 1 and 2 and can be detected through 
intersection. 

 
4. Herb 2 and Herb 3 have similar patterns as the functions 

of perfumes 1, 2, and 3, as shown by expressions (18) to 
(20), and (23) and (19), (21), and (22). 

 

IV. CONCLUSIONS 
    This work presented a different approach to determine if a 
perfume is suitable to mask unwanted odors Such as herbs in 
smart homes and vehicular environments, whereby the 
detection of odors and spraying of the right perfumes with 
deep masking is carried out automatically through sensor 
detection and spraying systems. The presented approach also 
allows to detect and unmask harmful odors that could risk 
human health but can go unnoticed due to the presence of 
perfumes and other odors. The work also highlights the fact 
that there is a difference in the shape and time response 
between manufactured perfumes and odors. This difference in 
the response characterisitics enables categorization of certain 

odors and what type of perfumes that can mask them in terms 
of ability of the perfume curve to encompass the odor curve 
and hide its presence, with the ability to carry out the reverse 
process. Thus, certain chemical properties and sensor 
properties can be utilized for optimum uncovering of presence 
of certain odors. With future applications in the vehicles and 
smart homes, which allow monitoring and detection of 
unwanted odors, harmful odors. 
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