
 

 

 
Abstract—The paper first proposes a fast novel spectrum sensing 

algorithm for cognitive radios based on cyclic autocorrelation. When 
only the existence of primary users in noise is detected, special cyclic 
frequency can be choosed to sense, which will significantly reduce the 
computational cost in applying the cyclostationarity detection. The 
paper also proposes to select the users with good detection 
performance for cooperative sensing so as to improve sensing 
sensitivity. It demonstrates that the throughput of CR system is also 
improved by user selection. 
 

Keywords—spectrum sensing, cyclostationary detection, cyclic 
autocorrelation, sensing-throughput, user selection 
 
 

I. INTRODUCTION 

Cognitive radio [1] has been proposed as a possible solution 
to improve spectrum utilization via opportunistic sharing. 
Cognitive radio users are considered lower priority or 
secondary users of spectrum allocation to a primary user. Their 
fundamental requirement is to avoid interference to potential 
primary users in their vicinity. That is, it is necessary to 
dynamically detect the existence of primary users’ signals. 
Detecting the presence of primary users is currently one of the 
most challenging tasks in CR design and implementation. 

There are several definitions of a vacant frequency band, but 
generally we can consider that a frequency band is unoccupied 
if the filtered radio signal within this band is only composed of 
noise. In the opposite case, this signal will consist of an 
unknown nonzero number of telecommunication signals in 
addition to the noise.  

How to detect the existence of primary users in the given 
frequency bands? The solution to this problem was largely 
studied in the past and depends on the degrees of knowledge we 
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have on the signal and the noise. Energy detection is a major 
and basic method. It needs the knowledge of accurate noise 
power. In practice, it is very difficult to obtain the accurate 
noise power. When noise power is unknown, the quality of 
detection is strongly degraded[2][3]. Matched filtering is the 
optimum method for detection of primary users. However, 
matched filtering requires the cognitive user/radio to 
demodulate the received signal hence it requires perfect 
knowledge of the primary users signal features. Moreover, 
since the cognitive radio will need receivers for all signal types, 
it is practically difficult to implement. For the case of unknown 
noise power, the cyclostationarity property of communication 
signals is exploited. In contrast to noise which is a wide-sense 
stationary random signal with no correlation, the modulated 
signals are in general coupled with sine wave carriers, pulse 
trains, hopping sequences or cyclic prefixes which result in 
periodicity of the mean and autocorrelation of such signals. 
These features can be used to discriminate the noise from 
modulated signal. The detection based on cyclostationarity 
property chooses a cyclostationarity model[4],[5] rather than a 
stationary one for the signal. This model is particularly 
attractive when the noise is of stationary type. Several 
works[6]-[10] are devoted to this kind of problem and propose 
various tests of cyclostationarity over a given set of cycle 
frequencies. Among these methods, cyclic spectrum or 
spectrum correlation density (SCD) function is the main 
estimator. To better depict cyclic spectrum, large estimation is 
needed. While the spectrum detection probability(Pd) and the 
probability of false alarm(Pfa) haven’t been expressed in a 
closed analytical form. 

In this paper, a sensing technique based on cyclic 
autocorrelation (CA) is proposed to detect the primary users in 
the given spectrum. The remainder of the paper is organized as 
follows. In section 2 the cyclic autocorrelation features are 
introduced and the detecting model of the primary users is 
presented. A fast spectrum sensing method is proposed in 
section 3 and probability distribution functions of the computed 
CA are given. In section 4, computer simulations are presented 
to verify the method. In section 5, cooperative spectrum sensing 
is discussed and user selection is proposed. Finally we present 
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our conclusion in section 6. 
 

II. CYCLIC AUTOCORRELATION FEATURES 

A. The Definition and Features of Cyclic Autocorrelation 
The cyclic autocorrelation (CA) of a complex-valued time 

series s(t) is defined by [11] 
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which can be interpreted as the Fourier coefficient of any 
additive sine wave component with frequency   that might be 
contained in the delay product (a quadratic transformation) of 
s(t). is called cycle frequency. It is a discrete set of values and 
can be writen as  n , which includes zero values and nonzero 

values. In the degenerate case of 0 , the left member of (1) 
becomes the conventional autocorrelation. 

B. Cyclic Autocorrelation of Ddigitally Modulated Signals 
The basic mathematic model of digitally modulated signals 

can be described as [12] 
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where )(ta , )(t are narrow band modulating signals, )(tg  
is the shaping signal. T is the symbol period and cf  is the 
carrier frequency.   is the delay in a symbol period. Equation 
(2) can represent ASK, PSK, QAM signal and so on. na is 
kept constant in a symbol period. Complex stationary series 
 na  satisfies the following equation  
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where 2
a is variance of  na , nm ,  is the discrete Dirac delta 

function.  
When the shaping signal )(tg  is the square wave  
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III. SPECTRUM SENSING BASED ON CYCLIC 
AUTOCORRELATION  

A. The estimation of cyclic autocorrelation 
Define the numerical cyclic autocorrelation estimation of 

)(ts  as  
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where N is the number of observations,   is time delay. 

B. Hypothesis testing 
Spectrum sensing can be modeled as a hypothesis test 

problem. There are two possible hypotheses H0 and H1 
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hypothesis H1 refers to the presence of a primary user and 
hypothesis H0 refers to the presence of vacant frequency bands, 
where )( nx is the received signal, )(ns  is the possible 
primary user signal passed through a wireless channel 
(including fading and multipath effect), and )(nw is a White 
Gaussian Process with zero-mean. 

In section Ⅱ we analyzed the CA of general modulation 
signal, now we analyze the CA of the White Gaussian Process. 
Because )(nw  is a stationary process, it doesn’t have 
cyclostationarity property, its CA function is given as [6]  
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where 2
w  is noise variance.  

Equation (10) clearly displays two meanings. One is that 
)(nw  hasn’t nonzero cycle frequency or )(nw  has only 

one cycle frequency 0 . The second is )(
wR has 

nonzero value only at 0  and 0 . If 0 or 
0 , then 0)( 

wR .  
According to (7), testing for the presence of primary user can 

change to test whether the estimated signal cyclic 
autocorrelation ),(ˆ xR  is different from zero at 

0 or 0 . There exists many cyclic frequencies, we 
can use their maximum value of CA as decision statistic.  
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where r is decision statistic,  is threshold.  
There exists many cyclic frequencies, when we want to 

distinguish different signals such as ASK, PSK and QAM etc, 
we should know the specific cyclic frequencies. While if we just 
detect the existence of primary users in noise, we can chose 
cyclic frequency 0  to sense. 

 

C. Fast spectrum sensing  
According to (7), we can find that ),(ˆ sR  has 

maximum value at 0 and its value is  
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where ),(ˆ
max R gradually reduces with the growth of  . 

According to (10), we can see that the CA of )(nw  has 

nonzero value 2
w  only at 0  and 0 . If T0 , then 

0)(0 wR , and   

0),0(ˆ),0(ˆ   sx RR                         (13) 

so we can use ),0(ˆ xR  as feature detector to detect the 
presence of primary user. For special cyclic frequency 

0 , ),0(ˆ xR  has maximum value, so it has the best 

detecting performance. ),0(ˆ xR  is one dimension function 
about  , its search is simple. In practise, once given any 
nonzero 

p , the computation complexity of ),0(ˆ
pxR   is nearly 

as that of the energy detector. This method can be used to detect 
ASK, PSK, QAM signal and so on which can be represented by 
(2). In this regard it is easily applicable because it is also a blind 
detection method. 

D. Probability distribution function of the computed CA  
Upon substituting )(ns in (8) with )(nw  which is a 

white Gaussian process with zero-mean and variance 2
w . 

Then ),(ˆ wR are circularly symmetric i.i.d. complex 
Gaussian random varibles with zero-mean and variance Nw /4 . 
So 
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where ),( CN represents the complex Normal distribution. 
Hypothesis H1 corresponds to the presence of user signal and 

noise, i.e., )()()( nwnsnx  . )(ns  is the possible 
primary user passed through a wireless channel. Substituting 

)( nx  in (8) with )()( nwns   
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where ),(ˆ sR  is the CA of the primary users’ signals，it can 

been see as a constant of the time domain. ),(ˆ swR  and 

),(ˆ wsR  are cyclic cross correlation functions between s(n) 

and w(n), and ),(ˆ),(ˆ  wssw RR  ，they are nearly the 
complex Gaussian Normal distribution. Obviously 
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Equation (14) and (18) are obtained through statistics 
analysis under H0 and H1 cases. Next some simulation results 
which validate these important results are presented. 20000 

Monte Carlo simulations are performed. The number of 
observations is N=2000.  

Fig.1  the distribution of CA under H0, 12 w  

Fig.1 shows the distribution of CA under 0H case, suppose 
noise power 12 w . “*” represents simulated result. The 
simulated CA value under 0H  case is nearly zero and its 
distribution satisfies Gaussian Normal distribution. “.” 
represents statistics analysis result of (14). The simulated 
results match to the theoretical results very well. 

 
Fig.2   the distribution of CA under H1 and SNR=0 

Fig.2 displays the distribution of CA under 1H  case, 
suppose SNR=0dB. “*” represents simulated result. “.” 
represents statistics analysis result of (18) and CA value is 
supposed as 0.68. The simulated distribution of CA value under 

1H  nearly matchs to the statistics analysis.  
 

IV. NUMERICAL RESULTS 

A. The Magnitudes of CA For Signal in Noise  
In this section the performance of the proposed cyclic 

autocorrelation based detector is discussed. As a signal of 
interest, a BPSK time series with baud-rate of 

20/cb ff  is taken. cf  is the carrier frequency. Sampling 
frequency is cs ff 5 . The number of observations is N=2000. 

Fig.3 displays that the magnitudes of CA for signal in 
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Additive Gaussian White Noise at  =0.1T and suppose SNR=0. 
It shows that the magnitudes of CA at cyclic frenquencies (such 
as 0, 40) are obviously larger than the CA magnitude of 
Gaussian White Noise. It also shows that the CA has maximum 
value at 0  and this maximum value is 0.9 when  =0.1T, 
which matches the (12).  

 
Fig.3 the magnitude of CA for BPSK signal in noise and SNR=0 dB 

 

 Fig.4    the CA at τ=0.1T for s(n)+w(n), SNR=0 
Fig.4 displays the magnitudes of CA for signal at different 

time delay  and   is from 0.01T to 0.1T. Suppose SNR=0. 
Fig.4 clearly dispalys that the magnitudes of CA are different at 
different cyclic frenquencies (such as 0, 40) and different time 
delay  (such as 0.02T, 0.1T). These CA magnitudes obviously 
differentiate the noise，so can be used to detect the presence of  
primary users in a licensed spectrum. 

In order to verify the performance of the proposed methed, 
theory results and computer simulations are made. We use 
constant false alarm rate (CFAR) method. First, we fix the 
thresholds based on probability of false alarm Pfa, then 
calculate and simulate the probability of detection Pd for 

various SNR cases. We set the target Pfa=0.1, choose  =0.1T, 
0.3T, 0.5T, 0.7T and N=2000. The threshold for energy detector 
(ED) is given in [13]. 

B. Without Noise Uncertainty 
First the noise variance is exactly known, the detection 

performance made  by these two methods are compared in Fig.5 
and Fig.6. 

The analytical results of the probabilities of detection for a 
pre-specified probability of false-alarm at given SNR and 
different time delay  are shown in Fig.5.  

 
Fig.5   Pd versus SNR according to theory 

From Fig.5 we can find that the detection performance of CA 
is more better than ED method when  =0.1T. The detection  
performance of CA is equal to ED method when  =0.3T. 
When  =0.5T, 0.7T, its detection performance is worse than 
ED method. 

Fig.6 is a simulation result. 10000 Monte Carlo simulations 
are performed. The number of observations is N=2000. From 
Fig.5 and Fig.6, it can be found that the simulated results match 
to the theoretical results very well. 

 
Fig.6   Pd versus SNR according to simulation 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 2, Volume 6, 2012

75



 

 

C.  Noise Uuncertainty Is Present. 
However, in practice, noise uncertainty is always present. 

Due to noise uncertainty, the estimated (or assumed) noise 
power may be different from the real noise power. In practice, 
the noise uncertainty factor of a receiving device normally 
ranges 1dB. Environment/interference noise uncertainty can be 
much higher. 

 
Fig.7  Pd versus SNR Noise uncertainty:1dB 

When the noise uncertainty is 1dB, the detection 
performances maded by two methods are simulated in Fig.7. 
10000 Monte Carlo simulations are performed. Compared with 
the case without noise uncertainty in Fig.6, it can be found that 
the performance of CA method has some subtle changes. In the 
case of T/ =0.3 and SNR=-12dB, the Pd is near 72% in Fig.6, 
and it is near 62% in Fig.7. The detection performance declines 
13.8%. While for Ed method, the Pd is near 72% in Fig.6 and it 
is 0% in Fig.7. The detection performance declines 100%. 
Fig.7 shows that the quality of energy detection is strongly 
degraded in the case with noise uncertainty, while quality of the 
CA method is still kept well. 

Both simulation results and mathematical analysis show that 
this CA method outperforms the energy detector in the 
presence of noise power uncertainty. 

V. COOPERATIVE SPECTRUM SENSING 
One of the great challenges of implementing spectrum 

sensing is the hidden terminal problem, which occurs when the 
cognitive radio is shadowed, in severe multipath fading or 
inside buildings with high penetration loss, while a primary 
user (PU) is operating in the vicinity [14]. Due to the hidden 
terminal problem, a cognitive radio may fail to notice the 
presence of the PU and then will access the licensed channel 
and cause interference to the licensed system. In order to deal 
with the hidden terminal problem in cognitive radio networks, 
multiple cognitive users can cooperate to conduct spectrum 

sensing. Cooperation in spectrum sensing can increase the 
reliability of detection of PU signals. In cooperative scenarios, 
each CR performs spectrum sensing and sends its sensing 
report to a data collector known as the fusion center. The 
problem how to combine the individual sensing results to make 
a final sensing decision at the fusion center is of great interest. 
The simplest fusion rules proposed in the literature for binary 
local decisions are “OR”, “AND” and “MAJORITY” rules. It 
has been shown that spectrum sensing performance can be 
greatly improved with an increase of the number of cooperative 
partners [15]–[20]. While a large number of cooperating CRs 
typically leads to an increase in total energy consumption and 
overhead in the sense that the entire reporting group cannot 
transmit until all the sensing reports are collected and 
combined by the fusion center so the average throughput is 
reduced. Moreover, a large number of CRs participating in 
cooperative spectrum sensing also increases the overall energy 
consumption of the CR network. Besides, because the classical 
and widely used fusion rules are not optimal, users with poor 
sensing performance may actually degrade the fused sensing 
performance [21],[22].  

Therefore, low overhead and energy effcient cooperative 
spectrum sensing schemes are required to address the above 
mentioned issues.  

In this section, the performance of spectrum sensing in terms 
of the throughput[23],[24] is analysised. We propose to select 
the users with good performances to cooperative sensing so as 
to optimize the throughput of the secondary users. 

A. Muiti-secondary User for Spectrum Sensing 
There are various cooperative schemes to combine the 

sensing information from the secondary users, such as the 
k-out-of-N fusion rule, soft decision based fusion, and weighted 
data based fusion [25]. In this section, using the k-out-of-N 
fusion rule as the basis, we formulate an optimization problem 
using the sensing time and the fusion parameter k as the 
optimization variables to jointly maximize the throughput of 
the secondary users while giving adequate protection to the 
primary user. Second, we propose an selective scheme for the 
optimization problem. 

Suppose that the k-out-of-N fusion rule is adopted as the 
fusion scheme. By setting a common threshold   for the CA 
detector at the sensor nodes, the overall probabilities of 
detection and false alarm of the cognitive radio network are 
respectively given as 
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Accord to (14) and (18), at hypothesis 0H . The probability 

of false alarm faP for the CA algorithm is 
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And at hypothesis 1H . The probability of detection dP for 

the CA algorithm is 
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where )(1 Q  is the inverse function of )( xQ . L is the 

sensing time and fs is sampling frequency. 

B. Optimization of Cooperative Sensing 
A basic frame structure of a cognitive radio network consists 

of, at least, a sensing slot and a data transmission slot. Suppose 
the sensing duration is L and the frame duration is T, So the 
length of period T-L is used for data transmission. Denote C0 as 
the throughput of the secondary network when it operates in the 
absence of primary users, and C1 as the throughput when it 
operates in the presence of primary users. 

If there is only one point-to-point transmission in the 
secondary network and the SNR for this secondary link is SNRs 
=Ps/N0, where Ps is the received power of the secondary user 
and N0 is the noise power. Let Pp be the interference power of 
primary user measured at the secondary receiver, and assume 
that the primary user’s signal and secondary user’s signal are 
Gaussian white Noise and independent of each other. 
According to [23] 
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where opp NPSNR / . Obviously 10 CC  .  

For a given frequency band of interest, P(H1) is defined as 
the probability for which the primary user is active, and P(H0) 
is defined as the probability for which the primary user is 
inactive. Then P(H1)+ P(H0)=1. 

There are two scenarios for which the secondary network can 
operate at the primary user’s frequency band.  

The first scenario: When the primary user is not present and 
no false alarm is generated by the secondary user, the 
achievable throughput of the secondary link is 

0C
T

LT  . 

The second scenario: When the primary user is active but it 
is not detected by the secondary user, the achievable throughput 

of the secondary link is 
1C

T
LT   

The achievable throughput of the secondary users under 
these scenarios are respectively given as 
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then the average throughput for the secondary network is given 
by 
                       10 OOO                                            (28) 

Obviously, for a given frame duration T, the longer the 
sensing time L , the shorter the available data transmission time 
T- L.. 

Usually spectrum sensing optimization includes throughput 
optimization. That is making the achievable throughput of the 
secondary network maximized while the primary users are 
sufficiently protected. We suppose the activity probability P(H1) 
of primary users is small, say less than 0.3, thus it is 
economically advisable to explore the secondary usage for that 
frequency band. Since C0 > C1, the first term in the right hand 
side of (28) dominates the achievable throughput. Therefore 
the optimization problem can be approximated by 

dKd PPts

OO





..

~max 0                           (29) 

When CA detector is applied, using (19) and (23) we have  
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Thus, from (30) we can see that the achievable throughput of 
the secondary network is a function of the sensing time L and 
overall probabilities of detection Pkd. So the optimization 
problem can be approximated by 
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C. Selective Cooperative Sensing 
   Because the classical and widely used fusion rules are not 
optimal, users with poor sensing performance may actually  
degrade the fused sensing performance.In this section, we 
propose to select the users with good detection performance to 
cooprative sense so as to improve sensing sensitivity. 

D. Numerical Results 
   In IV section, it can be found that simulated results match to 
the theoretical results very well, because of this consistency, in 
the following evaluations, we will only consider the theoretical 
results. 

In the following simulations, we set the number of secondary 
users to be N=6. and the frame duration to be T=20ms. The 
sampling frequency of the received signal is assumed to be 10 
MHz, and Pd is set as 90%. The SNR of the primary user’s 
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signal received at the secondary users is varied from -20dB to 
-5dB. The fusion scheme is k-out-of-N fusion rule.  

Fig.8 shows the overall PKd of the network versus SNR in 
k-out-of-N fusion scheme using different k for secondary 
network with six users. It can be found that Pkd is maximum 
when k=1, this is “OR” rule. Pkd is the least when k=6 and this 
is “And” rule. Comparing Fig.5 and Fig.8，it can be found that 
cooperative spectrum sensing obviously improves the system 
detection probabilities in the case of k=1. 
   Fig.9 shows the overall PKd of the network versus sensing 
time in k-out-of-N fusion scheme. The overall PKd of the 
network improves with the increase of sensing time and 
reduces with the increase of k. 
   Fig.10 shows the overall PKd of the network versus sensing 
time in the cases of selective cooperative users and unselective 
cooperative users. Six users channel gains are assumed as 
h=[0.9, 0.8, 0.7, 0.6, 0.6, 0.5] and their SNR=[-5, -5, -5, -6,-7, 
-8]dB. In the cases of users k=3 and k=4, the detection 
performace of selective cooperative sensing is obviously 
better than unselective cooperative sensing. 

 
  Fig.8  The overall PKd of the network versus SNR in k-out-of-N fusion 
scheme  

 
    Fig.9  The overall PKd of the network versus sensing time in 
k-out-of-N fusion scheme  

 
Fig.10 The overall PKd of the network versus sensing time in the cases 
of selective cooperative users and unselective cooperative users 

 
Fig.11 shows the throughput for the secondary network 

according to (26), (27) and (28). In (28), 0O dominates the 
achievable throughput, so system throughput can be 
approximated by 0O . 

 
Fig.11  the throughput for the secondary network ( “*” for O , 

“ O” for 0O , “☆” for 1O ) 

Dealing with the optimization problem of spectrum sensing, 
the throughput of a CR system is considered. Fig.12 shows 
optimization throughput of the secondary network through user 
selection. “k=3 selective” expresses selecting three users with 
good performance to cooperate sensing from six users. “k=3” 
expresses any three users without selection. We can find that 
the maximum throughput with user selection is obviously 
larger than the maximum throughput without user selection in 
the case of k=3 and k=4. 
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Fig.12  optimization  throughput of the secondary network  

VI.  CONCLUSION  

In this paper, a fast spectrum detecting algorithm based on 
cyclic autocorrelation (CA) of communication signals is 
proposed. Theoretical analysis and simulations have been 
carried out to evaluate the performance of the proposed 
methods. When only detect the existence of primary users in 
noise, special cyclic frequency 0  is chosen to sense. In 
this way it is easily applicable because it is also a blind 
detection method. Based on this method, we proposes to select 
the users with good detection performance to cooprative sense 
so as to improve sensing sensitivity. It demonstrates that the 
throughput of CR system is also improved by user selection.  
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