
 

 

  

Abstract— In this paper, the model predictive control for the 

networked control systems is proposed. The problem of data dropouts 

in the sensor controller link when the controller does not receive new 

feedback data is treated. As in predictive control design the sequence 

of future control actions up to a given horizon is calculated at each 

sampling time, the natural idea is to use not only the first control 

action, but also other terms of the control sequence, in case the 

sensor data at next sampling times are not available. From the 

implementation point of view there are two or more control laws 

(depending on the number of lost output samples) which are switched 

arbitrarily fast. A sufficient stability condition for this switched 

control system is derived using the concept of quadratic stability. The 

effectiveness of the proposed control strategy is demonstrated by 

control of a simple laboratory plant. 

 

Keywords— data loss, model predictive control, networked 

control system, quadratic stability.  

I. INTRODUCTION 

etworked control systems (NCS) gained increasing 

attention in recent years due to its cost effective and 

flexible applications. The use of a data network in a control 

loop enables remote data transfers and data exchanges among 

users, reduces the complexity in wiring connections and the 

costs of medias, provides ease in maintenance and offers 

modularity and flexibility in control system design. Several 

network protocols for real-time remote industrial control 

purposes have been developed during last decades, for 

example Area Network (CAN) or Profibus. The computer 

networking technologies especially Ethernet have also 

progressed rapidly and are also appealing for use in control 

applications. Modern network solutions, like PROFINET or 

WLAN have been recently developed for industrial 

applications [1]. The wireless technologies, such as Bluetooth 

or Zigbee, received significant attention and can play an 

important role in networked control systems [2].  

In the networked control system, several components of the 

system may communicate over the common network that 
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connects them together, as illustrated in Fig. 1. This brings 

many specific control issues giving rise to important research 

topics. The networked control system design has to deal with 

the dynamics introduced by the communication network, 

which may include communication disruptions such as 

communication channel noise, data losses, bandwidth 

limitations, time-varying delays, and data quantization. The 

variable transmission delays can arise due to various reasons, 

and are of various characteristics and magnitudes - 

measurement delays, operator delays, computational delay 

from control or optimization algorithms and communication 

delays. All these phenomena in the control loop can lead to 

performance degradation and eventual instability in control 

systems.  

 

 
 

Fig. 1 Networked control scheme 

 

Recent research efforts have led to important results on the 

design and stability analysis of networked control systems [3 – 

5]. Various control design approaches have been used. A new 

tool for PID controller tuning in networked control systems 

with time-varying delays has been described in [6]. In [7] the 

gain scheduler middleware which modifies the controller 

output with respect to the current network traffic conditions 

has been presented. The remote fuzzy logic controller has been 

proposed in [8] to compensate the network-induced delay for a 

single-input–single-output plant. The model based predictive 

NCS architecture that runs under non-ideal network conditions 

where packet loss and random time delays occur has been 

presented in [9]. Implementation of optimal control techniques 

in NCS design has been investigated in [10, 11]. H∞ control 

for NCSs with the effects of both the network-induced delay 

and the input saturation has been designed in [12]. An adaptive 

algorithm to estimate and compensate random communication 

time delay in NCS has been proposed in [13]. 
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In this paper, we focus on design and analysis of network 

control systems subject to data losses at the sensor-controller 

link. In this case feedback is lost and the actuator must operate 

on its own, usually setting the control input to zero or to the 

last implemented value. The data packets may be lost due to 

the network congestion or due to the link failures caused by 

the unreliable nature of the links, such as in the case of 

wireless networks. The similar problem arises in the control 

systems with asynchronous measurement, where the samplings 

are not received at fixed time instants due to the difficulties of 

measuring.  

Although an intensive research activity is devoted to the 

design and analysis of networked control system, only few 

papers deal with the issue of data losses. The stability and 

disturbance attenuation issues for a class of networked control 

systems under bounded uncertain access delay and packet 

dropout effects were investigated in [14]. The optimal control 

of linear time-invariant systems over unreliable 

communication links is studied and sufficient conditions for 

the existence of stabilizing control laws were derived in [15].  

If the controller does not receive new feedback data, the 

plant is regulated in an open-loop system. The intuitive idea of 

using the plant model at the controller/actuator side to 

approximate the plant behavior during time periods when 

sensor data are not available was used in [4]. In [16] a novel 

timeout scheme and an autoregressive prediction model for 

delayed/lost sensor were used. In [17] the predictive control 

for nonlinear systems with guaranteed stability in the presence 

of data losses was designed.  

In the present paper, we also use the model predictive 

control (MPC) approach to deal with data losses in the control 

system. MPC represents a family of advanced control methods 

which make explicit use of the model to predict the future 

plant behavior and to calculate the future control sequence 

minimizing an objective function [18]. The objective function 

is formulated as a combination of the set-point tracking 

performances and control effort. MPC belongs to the category 

of open-loop optimization techniques and its implementation is 

based on the receding horizon strategy, i.e. only the first term 

of the future control sequence is used at each sampling instant 

and the calculation is repeated in the next sampling time. This 

allows to incorporate a feedback into the control loop and to 

improve the control performances in the presence of 

disturbances and unmodelled dynamics. 

First predictive control algorithms have been proposed at 

the end of the 1970s; they quickly became popular and 

developed considerably over the last three decades both within 

the research control community and in industry [19]. The 

popularity of MPC is mainly due to the fact, that it can be used 

to control a great variety of processes including time-delayed 

systems, the nonminimum phase systems or the unstable ones. 

The multivariable case can easily be dealt with as well. 

Another important feature of this control design approach is 

that constraints on the input/output variables can be 

systematically incorporated into the design procedure, which 

might improve the resulting control system performances and 

the process operation safety. 

MPC has proved its effectiveness in the networked control 

systems especially in the context of distributed and 

hierarchical control. The review of decentralized, distributed 

and hierarchical control architectures based on MPC is in [20]. 

The problem of variable time delays in control loop has been 

addressed in [21] where the time-stamped MPC algorithm that 

uses a communication delay model along with time-stamping 

and buffering has been proposed.  

In our paper the MPC approach is employed to treat the 

issue of data losses. As the sequence of future control actions 

up to a given horizon is calculated at each sampling time, the 

natural idea is to use not only the first control action, but also 

other terms of the control sequence in case the sensor data at 

next sampling times are not available. From the 

implementation point of view there are two or more control 

laws (depending on the number of lost output samples) which 

are switched arbitrarily fast.  

Stability is one of the most important characteristics of 

control systems. To analyze stability of control loop with a 

switched controller, it is not sufficient to check whether each 

applied control law ensures the closed loop stability, but it is 

necessary to take into account also a dynamics induced by 

control law switching which can occur arbitrarily often. The 

stability analysis of the proposed control strategy will be based 

on the concept of quadratic stability which is frequently used 

for the analysis and synthesis of switched control systems [22, 

23]. Resulting stability condition is reformulated to the linear 

matrix inequalities form, which can be efficiently solved by 

many available software tools.  

The paper is organized as follows. First standard model 

predictive control design procedure is briefly described. Then 

a control strategy for the case of data loss in the sensor-

controller link is proposed. In the fourth section the stability 

analysis of the switched control systems is presented. The 

effectiveness of the proposed control scheme is evaluated by 

simulations and real-time control of a simple laboratory plant. 

Finally, some conclusions are given.   

II. MODEL PREDICTIVE CONTROL 

A. Plant Model 

The plant model is the cornerstone of the predictive control 

design. It should be accurate enough to fully capture the plant 

dynamics and allow predictions to be calculated. We consider 

the plant model in the form of the ARMAX model 
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where u(t) is the control variable, y(t) the measured plant 

output, d denotes the minimum plant model time-delay in 

sampling periods, v(t) represents the external disturbance and 

ξ(t) is the stationary random process with zero mean value and 

finite variance. For simplicity in the following the C(z
-1

) 

polynomial is chosen to be 1. Of practical importance, 
11 z1)D(z −− −= allows incorporating an integral action into 

the control design.  

B. Control Design 

Generalized predictive control (GPC) developed in [24] 

belongs to the most popular predictive algorithms based on the 

parametric plant model. The control objective is to compute 

the future control sequence in such a way that the future plant 

output is driven close to the prescribed set point value; this is 

accomplished by minimizing the following cost function 
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subject to 
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where sh, ph and ch are positive scalars defining the starting 

horizon, prediction horizon and control horizon, ρ is 

a nonnegative control weighting scalar. ( )t/jty +ˆ  denotes the 

j-step ahead prediction of y(t) based on the data available up to 

the time t and w(t+j) is the future set point value at time (t+j).  

The cost function (3)-(4) may be rewritten in the suitable 

vector form 
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( )t/jty0 +  denotes j-step ahead prediction of the plant free 

response calculated as follows  
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The polynomials ( )1

j zF −  and ( )1

dj zH −
−  as well as the 

coefficients of matrix 1G  can be obtained by solving the 

following Diophantine equations 

 

)z(Fz)z(E)z(D)z(A1 1

j

j1

j

11 −−−−− +=  (11) 

)z(Hz)z(G)z(B)z(E 1

dj

dj1

dj

11

j

−
−

+−−
−

−− += . (12) 

 

The future control sequence minimizing the cost function 

(5) is given by 
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In standard GPC implementation only the first term of the 

calculated future control sequence  
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is used at each sampling time and the optimization process is 

repeated at the next sampling time. However, the further 

control increments can also be calculated and stored for 

potential use at next sampling times 
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In (15) and (16) the coefficients γij for 1ch,1,i −= K , 

ph,sh,j K=  are the coefficients of i-th line of matrix K.  

The control laws (15)-(16) may also be implemented using 

the standard pole-placement control structure  
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The Ri(z
-1

), Si(z
-1

) and Ti(z
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) polynomials depend on the 

plant model as well as on the choice of the tuning parameters 

sh, ph, ch, ρ and can be calculated as follows 
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III. MODEL PREDICTIVE CONTROL SUBJECT TO SENSOR DATA 

LOSS 

In standard predictive control operation the control input is 

calculated at each sampling instant according to the control 

law (shown in Fig. 2) 
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using the measured value of the plant output.  

In case the current output value is not available due to the 

sensor data loss, the control law (21) can not be evaluated. In 

this situation the control input is usually set to zero or to the 

last implemented value.  

 

 
 

Fig. 2 Pole placement control structure 

 
The model predictive control approach offers another 

possibility. As it has been stated above, at each sampling 

instant the sequence of future control inputs ( )itu + , 

1ch,1,i −= K  is calculated which can be stored and 

employed at next sampling instants. Thus in case of data 

dropout at time t the control input ( )1tu +  calculated at 

previous sampling instant can be used instead, i.e. the control 

law takes the following form  
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If the data dropout continues at further sampling instants, 

another terms of future control input sequence can be used.  

The above described control strategy can be implemented 

by switching between the control laws (21) and (22) (or the 

other ones if needed) as depicted in Fig. 3. At any given time 

only one of the controllers is active in the closed-loop and 

supplies the control signal. 

The fundamental objective for the control design is the 

stability of the resulting closed-loop system. The stability 

analysis of switched control systems is by no means trivial. 

Even if each applied control law ensures the closed loop 

stability, it is necessary to prove the closed loop stability in 

case of switching between these control laws which can occur 

arbitrarily often. The switching action between controllers can 

induce a dynamical behavior that cannot be observed in any of 

the particular control systems. 

 

 
 

Fig. 3 Switched control system 

IV. STABILITY ANALYSIS OF LINEAR SWITCHED SYSTEMS 

Switched systems are a special class of hybrid dynamical 

systems which consist of a family of subsystems and a 

switching law specifying the switching between the 

subsystems. The continuous dynamics of switched linear 

systems is described by a set of linear time-invariant 

differential equations which involve (at least partially) the 

same states. Each of these differential equations models the 

dynamics of a linear time-invariant (LTI) system.  

The analysis and synthesis of switched systems has attracted 

increasing interest in recent years due to their importance both 

in the control theory and applications [25, 26]. Switching may 

be caused by the inherent multimodal nature of the process, or 

it may arise on the side of controller when the process is 

exposed to changing conditions, disturbances or constraints.  

There are two possible alternatives in study of switched 

control systems. In the first one the objective is to find a 

switching law such that the switched control system is stable 

and satisfies the desired performance requirements. In the 

second case the switching law is defined and the closed loop 

stability has to be investigated.  

Stability analysis of switched control systems is frequently 

based on the concept of quadratic stability. Consider uncertain 
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time-varying linear system described by the linear differential 

inclusion (LDI) in the form 
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where 
nxn

RΩ ⊆ . A sufficient condition for the stability of LDI 

(23) is the existence of a quadratic function  
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that decreases along every nonzero trajectory of (23). If there 

exists such a matrix P, the LDI (23) is quadratically stable and 

V(ζ) is the corresponding quadratic Lyapunov function. 

The switched linear system can be described as an uncertain 

system with a polytopic type uncertainty 
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or in the discrete-time case 
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As the control strategy proposed in the previous section is 

formulated and implemented in discrete-time form, the 

stability condition for the linear discrete-time uncertain system 

(26)-(27) is of interest. 

 

Lemma 1  

The polytopic system (26)–(27) is quadratically stable if and 

only if there exists a positive definite matrix 0PP >′= such 

that  

 

0PPAA di

T

di ≤−   for  N,...,3,2,1i = . (28) 

 

For 1N =  the quadratic stability means the satisfaction of 

necessary and sufficient conditions, while for 1N >  it implies 

only the satisfaction of sufficient conditions.  

Wide variety of problems arising in control theory lead to 

convex or quasiconvex optimization problems which can be 

formulated as a set of linear matrix inequalities (LMI) [27, 28]. 

The resulting optimization problems can be solved numerically 

very efficiently using recently developed interior-point 

methods.  

Using Schur complement the Ljapunov equation (28) can be 

rewritten to the following LMI form 

0
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which can be solved by many software packages, such as 

MATLAB LMI toolbox, software SEDUMI, etc.  

According to the Lemma 1 the stability analysis of the 

control system with arbitrary switching of controllers 

necessitates solving the system of N linear matrix inequalities 

(29) where N is the number of lost output samples and iAd  

N1,2,3,...,i =  are the discrete state matrices of the closed loop 

system with the corresponding control law. If the solution  

0PP >′=  of (29) exists, the closed loop is stable, i.e. the 

controllers can be switched arbitrarily often.  

V. EXAMPLE 

The effectiveness of the proposed control scheme has been 

evaluated by control of a cylindrical laboratory tank depicted 

in Fig. 4.  

 

 
 

Fig. 4 Cylindrical laboratory tank 

 

The plant output is the water height measured by a pressure 

sensor and the plant control input is the inflow servo valve 

opening. The tank has also the outflow servo valve which has 

been used to generate a disturbance. The servo valves are 

governed by voltage within the range 0 – 10 V. The pressure 

sensor range is 0 – 10 V, too. 

The control signal has been calculated in PC and 

implemented using the programmable logical controller 

Simatic S7-200. For the communication between PC and PLC 

the OPC (OLE for Process Control) communication standard 

has been used.  

The following second order model of the water height 

dynamics has been identified with the sampling period 

Ts = 1 s  
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Based on this model the GPC controller has been designed 

using the following control design parameters 
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First standard implementation of GPC has been tested using 

different values of control horizon { }5,4,3,2,1∈ch . The 

results of closed loop simulations are shown in Fig. 5. As it 

can be seen, the closed loop performances of all controllers are 

almost identical.  
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Fig. 5 Output time responses for different values of control 

horizon 

 

Then data dropouts in the sensor controller link lasting one 

sampling period have been assumed. The control horizon has 

been set to 2 so that not only ( )tu  but also the future value of 

control input ( )1tu +  is available at each sampling instant. To 

analyze the closed loop stability, the LMI (29) has been 

solved, where 2N =  and the closed loop matrices have the 

following form 
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The solution 0PP >′=  of (29) exists; i.e. the closed loop 

system with two switched controllers is stable.  

To evaluate the control system performances, two 

simulations have been performed. First, no data dropouts occur 

and then dropouts of 1.5% data have been artificially 

generated and the proposed control strategy has been 

implemented. The results of both experiments are compared in 

Fig. 6. It can be seen that the plant output time responses differ 

only slightly. Time instants of data dropouts are in Fig. 7. 
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Fig. 6 Output time responses  
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Fig. 7 Time instants of data dropouts  

 

Next, loss of two consecutive output samples has been 

assumed. The control horizon has been increased to 3. The 

resulting closed loop matrices are as follows 
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The solution of LMI (29) with the closed loop matrices 

(34)–(36) exists, i.e. the sufficient condition for the closed 

loop stability is satisfied. The simulation results are shown in 

Fig. 8. As in the previous case, the no-dropouts case 

(first experiment) has been compared to the situation when the 

9% of first samples and 3.5% of second samples have been 

lost (second experiment). It can be seen that even such 

significant loss of data does not cause the deterioration of the 

control system performances. Time instants of data dropouts 

can be seen in Fig. 9. 
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Fig. 8 Output time responses  

0 200 400 600 800 1000
0

0.2

0.4

Time (s)

D
a
ta

 d
ro

p
o
u
ts

 

 
first sample

second sample

 
Fig. 9 Time instants of data dropouts  

 

The effectiveness of the proposed control strategy has also 

been evaluated by real-time experiments. The control horizon 

ch has been set to 2, i.e. in addition to ( )tu  also the future 

value of control input ( )1tu +  has been calculated at each 

sampling instant, which would be used at the next sampling 

instant only in case of the output data dropout.  

Figures 10 to 12 show the real-time control results of two 

experiments. In the first experiment the model predictive 

control with no data dropouts has been performed. In the 

second one, 1.5% data dropouts have been artificially 

generated and the proposed control strategy has been 

implemented. The measured water height together with its 

reference value is shown in Fig. 10. Fig. 11 shows the time 

plots of control input (inflow valve opening). The disturbance 

signal (outflow valve opening) and the time instants of data 

dropouts are in Fig. 12. 
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Fig. 10 Output and reference time responses 
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Fig. 11 Control input time responses 
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Fig. 12 Disturbance time response and data dropouts 

 
As it can be seen from Fig. 10, control performances 

obtained in both experiments are comparables, i.e. the issue of 

data dropout has been successfully solved using the proposed 

control strategy. 
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VI. CONCLUSION 

The paper has dealt with the data loss issue in networked 

control systems. The proposed control strategy is based on the 

model predictive control design where the future values of 

control inputs are calculated and used at next sampling instants 

in case of data losses at the sensor-controller link. To analyze 

the closed loop stability with the proposed control strategy, the 

concept of quadratic stability has been used. The sufficient 

stability condition has been derived in the form of linear 

matrix inequalities. The proposed control approach can be 

useful in network control system applications where data 

dropouts in the sensor-controller link are expected. In the 

presented example the control performances have not been 

significantly deteriorated even in case when two consecutive 

output samples have been lost. 
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