
 

 

  

Abstract—Microreactors are being increasingly preferred over 

traditional macroreactors for sophisticated microbial processes 

because the accurate controls possible in the former are 

desirable for sensitive biological reactions. Sensitivity to 

disturbances is an important consideration here because 

cellular processes are constantly under the influence of noise 

from different sources. While intra-cellular noise has been 

analyzed in some detail, the effects of noise from the 

environment are less well understood. Since external noise is a 

ubiquitous feature of many microbial processes, the present 

communication analyzes its effect on microbioreactor 

stability. This is done by using the Lyapunov exponent as an 

index of stability. For glucose fermentation by immobilized 

Saccharomyces cerevisiae as a model system, simulation 

results show that the microbioreactor loses stability beyond a 

threshold variance of the noise. This threshold increases with 

the concentration of glucose and it is larger for an optimal 

distribution of cells than for a conventional uniform 

distribution. However, owing to the Crabtree effect, the 

glucose concentration has to be optimized between robustness 

to noise and inhibition at large concentrations. Previous results 

for macrobioreactors suggest that a similar optimization may 

be beneficial for filtering of the noise inflow in order to 

promote stochastic resonance. 

 

Keywords— External noise, Lyapunov exponent, Microbioreactor, 

Optimization, Reactor stability.   

I. INTRODUCTION 

MICROREACTORS are being increasingly preferred for 

many biological and biochemical applications that were being 

carried out in larger macroreactors. Possibly the most widely 

used application is for DNA detection and polymerase chain 

reaction (PCR) analysis [1,2]. The success of microbioreactor-

based PCR has spawned variations of this theme. These 

include mixing of DNA and a restriction enzyme, followed by 

separation of the fragments [3] and integration of DNA 

analysis with other steps such as electrophoresis [4]. 

 Integration of microbioreactors with other analytical 

devices has been useful in a variety of enzyme assays, such as 

the reaction kinetics of β-galacotsidase [5] and on-line 

reaction activities of HAB-mutase and soyabean peroxidase 

[6] and aspartate transaminase [7]. Like the combination of a  
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microbioreactor with capillary electrophoresis, enzymatic 

reactions also have benefited from such integration, Spross 

and Sinz’s [8] recent combination of a microreactor, an ESI 

device and a MALDI mass spectrometer illustrates the 

capabilities of expanded integration. 

 Similar to enzyme activity monitoring, immunoassays too 

have benefited from microreaction devices. Recently Yang et 

al. [9] employed a streptavidin-functionalised  capillary 

microreactor to perform highly efficient immunoassays of α-

fetoprotein analyte. Utsumi and coworkers [10] reported the 

use of a bundle of microbioreactors for the analysis of mouse 

immunoglobulin and nonylphenol using UV absorption 

spectroscopy. Both studies reported much higher sensitivities, 

lower costs and easier fabrication and automation by 

microreactors than by conventional assay methods. 

 Other areas of microbioreactor applications encompass flow 

cytometry [11], cellular biosensors [12] and fementations 

using free or immobilized cells or enzymes. The last group is 

another major area of applications, as DNA analysis and PCR 

were mentioned earlier, and it is the subject of the present 

analysis. Among recent applications for fermentation studies 

is Szita et al.’s [13] multiplexed microbioreactor for 

Escherichia coli cultivations. Zhang et al. [14] and Lee et al. 

[15] also studied E. coli fementations, as did Buchenauer and 

associates [16] more recently. A common focus of all these 

authors was on the monitoring and control of optical density, 

dissolved oxygen and pH in real time. Their microbioreactors 

showed excellent performance for all three variables and 

displayed good reproducibility. The scope of these reactors 

was extended by Samorski et al. [17] and Funke et al. [18], 

who moved from a few microreactors in parallel to an array of 

microtiter plates. This extension was driven by the lack of a 

miniature reactor that realizes simple process control in high 

throughput, mainly to obtain accurate and sufficient data for 

scale-up. 

 The initial studies have been based on E. coli, the work-

horse of biologists and biotechnologists. However, the yeast 

Saccharomyces cerevisiae has also attracted significant 

research attention. Studies by Zhang et al. [19], Reis et al. 

[20], Au et al. [21], Rahman et al. [22] and Schapper et al. 

[23] indicate that similar benefits can be obtained with S. 

cervisiae. Of these, Schapper et al.’s [23] work is a useful 

departure from those of others in that it deals with the spatial 

distribution of S. cerevisiae cells to maximize product 

formation. Since the present analysis is based on their work, it 

will be discussed later in detail. 

 The theme of this communication is the effect of external 

noise on microbioreactor performance. Many earlier studies 
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[24-29] have shown that noise from the environment can have 

injurious effects on bioreactor performance, and it can change 

the behavior of a bioprocess drastically. Excessive noise many 

destabilize the steady operation of a bioreactor, and even drive 

the process toward stochastic chaos [27,28]. These studies 

highlight the importance of understanding the effects of 

external noise on bioreactor performance. However, while 

these effects have been analyzed for macro-scale reactors, the 

influence of noise on a microbioreactor has not yet been 

analyzed. Since many chemical and biological processes are 

moving from macroreactors to microreactors, it is relevant to 

perform a similar analysis for a microreactor. This is the 

motivation for the present work. 

 

II. PROBLEM STATEMENT 

Although most of the studies of noise-affected bioreactors 

have focused on E. coli fermentations, the yeast S. cervisiae is 

no less important. Like E .coli, S. cervisiae is wide by 

preferred as a model organism to understand the behavior of 

yeasts. Moreover, S. cerevisiae may display a variety of 

outputs under different conditions, ranging from normal 

monotonic outputs to different kinds of oscillations and even 

chaotic behavior [30-32]. Noise from the environment, carried 

typically by a feed stream, can propel a culture exhibiting 

smooth monotonic outputs into one of the other types. Of 

these, chaotic performance is understandably the most 

undesirable, and therefore it is useful to analyze when such 

transitions are likely and how to avoid them. This short 

communication addresses the issue of occurrence of noise-

induced unstable behavior by determining the variations of the 

Lyapunov exponent of a key variable such as biomass 

concentration as the intensity of noise inflow, measured in 

terms of its variance, increases. The Lyapunov exponent and 

its use for stability analysis are introduced in the next section. 

 Here we provide a brief description of the microbial system 

to which it has been applied. Schapper et al. [23] studied S. 

cervisiae cultivation in a microbioreactor with the objective of 

determining the best spatial distribution of cells so as to 

maximize the production of a recombinant protein. The strain 

was S. cervisiae C468 (ATCC 20690) containing the plasmid 

pGAC9, which expresses the Aspergillus awamori 

glucoamylase gene and secretes glucoamylase into the 

extracellular medium. While most cultivations are carried out 

with a homogeneous distribution of cells, Schapper et al. [23] 

used topology optimization [33] to determine the best (non-

uniform) distribution so as to maximize glucoamylase 

production. Details are available in their publication. 

 Briefly, the growth of S. cervisiae comprises there 

metabolic processes: (a) glucose fermentation, (b) glucose 

oxidation and (c) ethanol oxidation. Glucose is the main 

carbon source. The synthesis of recombinant glucoamylase is 

growth-associated and occurs via oxidative metabolism. 

According to Schapper et al. [23], biomass growth along the 

three pathways may be described by Monod equations as 

presented below. 
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The microbioreactor was loaded with cells immobilized in 

porpous beads. From a practical perspective, the model 

accounted for the detachment of some cells from the supports; 

these cells add to the cells which did not got attached initially. 

Thus, there are always some free S. cerevisiae cells in the 

culture medium. Following the observation of Branyik et al. 

[34], only a constant fraction of the immobilized biomass, X!�,��"  was considered to be actively growing, and the rate of 

detachment of cells was described by 
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where C� reflects a switch to growth on ethanol (when glucose 

is depleted). 

The total immobilized biomass, Xim, is: 

 X!� � �1 ) γ�X!����                                   (5)                                                                                    

where �1 ) +� is the fraction of carrier used by the 

immobilized biomass. The plasmid- bearing content of Xim is: 

 X!�, � �1 ) p�X!�                                                       �6� 
 

The transport of suspended (free) biomass, glucose and 

ethanol occurs by fluid convection and diffusion. So the 

combined rates may be expressed in Fickian form as: 
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Schapper et al. [23] argued that since the flow of fluid 

through the microtube was not axially uniform, neither was 

the availability of substrates along the length at any time and 

with the passage of time at any position. Therefore a uniform 

distribution of the biocatalyst would not necessarily generate 

the highest possible amount of the product glucoamylase. 

Hence Schapper et al. determined the optimal longitudinal 

distribution of the immobilized cells in the microbioreactor by 

maximizing the total glucoamylase production rate. The 

objective function thus becomes: 

 

max. ф�r� �  max. M ROΩ
�t�dv                            �11� 

 

where RU �  �α�µ� ) α�µ�� 4X!�, P�V9 
 X3,:     �12� 

  
As stated earlier, the problem was solved by topology 

optimization [33]. For a homogeneous distribution of cells, 

Eqs.(1)–(10) are solved without any topological optimization; 

in this case,  γ stays constant at its initial value. 

 

III. DESCRIPTION OF NOISE INFLOW 

Microbial cultures are constantly under the influence of 

noise from within the cells and from outside. Intra-cellular 

noise is associated with the metabolic processes and is 

manifested in the expression of proteins by specific genes. 

There are two kinds of intra-cellular noise – intrinsic or 

extrinsic. Intrinsic noise may be detected through differences 

between the expressions of two reporter genes inside a single 

cell. Extrinsic noise affects both, or all, genes equally but 

generates differences between cells in a population. Both 

experimental methods [35] and mathematical models [36] for 

intra-cellular noise have been proposed. 

 While there are a sufficient number of studies of intra-

cellular noise to generate a number of recent reviews [37-39], 

the understanding of external noise and the combined effects 

of both sources of noise are still evolving. Nevertheless, there 

is sufficient evidence to underscore the significance of extra-

cellular noise in guiding the performance of a microbial 

culture. Both experimental [40-42] and simulation [43,44] 

studies provide ample information of the possible deleterious 

or beneficial effects of noise inflow to cellular systems. These 

studies have also indicated that external noise may be modeled 

by a set Gaussian distributions with time-dependent mean 

values and different variances.  

External noise permeates the cells and interacts with intra-

cellular noise. The nature of the interactions determines the 

subsequent course of a microbial process. Although there are 

few quantitative analyses of these phenomena, qualitative 

considerations (reviewed by Patnaik [45]) allow at least two 

important inferences. One is that noise may have either a 

harmful effect or a helpful effect on a biological system. These 

are discussed later. The second inference is that external noise 

is more likely to resonate with or nullify extrinsic noise rather 

than intrinsic noise. The reason is that the former two have 

comparable auto-correlation times of several minutes whereas 

that of intrinsic noise is much smaller [37,46].  

Just as for deterministic studies, E. coli and S. cerevisiae 

have been the main vehicles to understand the effects of both 

intra-cellular and extra-cellular noise. Analyses of continuous 

cultures of S. cerevisiae at the genetic level [47,48] have 

shown how variations in the noise experienced by the cells can 

induce them to undergo both metabolic and stability 

transitions that do not arise spontaneously in the noise-free 

system. Since noise is a ubiquitous phenomenon experienced 

by living cells, it becomes useful to analyze its effects. 

The analyses cited above were all for homogeneous 

populations, i.e. they did not consider differences among the 

cells and the effects of different environmental conditions 

experienced by an optimally distributed population. In view of 

the benefits demonstrated by Schapper et al. [23] for a 

topologically optimum distribution of S. cerevisiae cells in a 

noise-free microbioreactor, it is useful to understand the 

effects of external noise on such a system. This has been done 

in the present study and the performance has been compared 

with that of a similar noise-affected  homogeneous 

distribution. Owing to the importance and possibility of 

stability transitions, the focus here is on how noise may 

generate loss of stability. Previous studies by this author [27-

29,43] have shown that the Lyapunov exponent is a 

convenient and reliable index of the stability of a physical, 

chemical and biological system. Before it is applied to the 

present system, the method is introduced in the next section. 

 

IV. THE LYAPUNOV EXPONENT 

The Lyapunov exponent, λ, provides a convenient 

quantitative measure of the stability of a system in response to 

a disturbance. This is done by measuring the rate of 

divergence of a disturbed trajectory of the system from its path 

prior to the disturbance. The faster and more expansive the 

divergence, the greater is the likelihood of the disturbed 

system being propelled toward instability. 

Let x0 be the value of a concentration just before the start of 

a disturbance or noise signal. This is the starting time t=0. Let 

∆x(x0,t) denote the distance between the two concentration 

trajectories at any time t. Then the initial displacement is 

obviously ∆x(x0,0). A dynamic system is stable if the 

separation of the disturbed path from the initial stable path 

does not increase with time; this condition is expressed 

mathematically as: 

 sup|∆x�xD, t�| Z C exp �λt|ΔxD|, C ] R               �13� 
 

where R is a finite real number. The smaller is the value of R, 

the closer are the two paths, indicating greater stability. 

 The number λ is called the Lyapunov exponent, and it 

applies to both continuous and discrete processes. A multi-

variable system may have more than one Lyapunov exponent; 

then the largest exponent, λmax, is sufficient to characterize 

stability. This is calculated as: 
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If λmax < 0, the noise-affected trajectory will eventually return 

to its initial stable orbit. In the present context this means the 

disturbed concentration profile will gravitate back to its profile 

before the onset of noise. However, during the interim period 

the system may digress unacceptably far away from a stable 

situation, and the magnitude of λmax provides an indication of 

this. From the foregoing discussion it may be inferred that a 

system is stable if λmax < 0 and unstable if λmax  > 0. In the 

limit λmax → ∞, the system is said to be superstable, i.e. no 

disturbance of any magnitude can permanently shift the 

equilibrium to another state.   

 The exact value λmax = 0 denotes neutral stability, where the 

disturbed path eventually remains at a constant distance from 

the initial path. In most practical situations, owing to the 

interactions of noise with different characteristics from 

different sources, strict neutral stability is rarely observed and 

there is usually a gray area within which a system eventually 

settles after a disturbance; this is called marginal stability. The 

presence of marginal stability implies that the transition from 

stable to unstable behavior is not as clear and rigid as the 

Lyapunov exponent may indicate; instead, there is a transition 

window from one to the other phase. A more detailed 

discussed on the Lyapunov exponent is not warranted here; 

detailed discussions on this are available elsewhere [49-51].  

 

V. APPLICATION AND DISCUSSION 

As stated above, one of the main routes for the inflow of 

external noise to a bioreactor is through fluctuations in the 

flow rate(s) of the feed stream(s). These fluctuations may be 

modeled by a set of Gaussian distributions with different 

variances [40,42,43,52]. 

 Schapper et al. [23] compared the production rates of 

recombinant glucoamylase in a microbioreactor with a 

uniform distribution of immobilized cells with one containing 

a topologically optimized distribution of cells. To be 

consistent with their work, four representative values of the 

inlet concentration of glucose were chosen from the range of 

concentrations studied by them; the values of the parameters 

were also maintained the same as in their study (see Table 1). 

The values of the largest Lyapunov exponent for the biomass 

were computed at each inlet concentration for mean variances 

of the feed stream noise ranging from 0% (no noise) to 10%. 

The mean variance of a mixture of Gaussian distributions may 

be calculated as explained by Trailovic and Pao [53].  

 Briefly, a k-component Gaussian mixture has a probability 

distribution function (pdf) 
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where ΦhX; mf, σfk is a Gaussian pdf with mean mj, standard 

deviation σf and weights mn satisfying 
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Given the mixture parameters pwf, mfσfq, j � 1,2 … … , k                                                                                       
the mean m2  and variance σ0� of the distribution are: 
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Table 1. Values of the parameters used in computing the 

Lyapunov exponents (from [23]). 

 

Parameter Value Units 

Model parameters 

X!���" 
Pc/Vr 

P 

Y@/BC  

Y@/BD  

YF/@ 

tu/v 

α2 

α3 

µ1,max 

µ2,max 

µ3,max w�� w�� xy� xz� x{� x|� 

0.62 

13.6 

0.05 

0.12 

0.48 

3.35 

0.65 

32.97 
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DG 
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w 

h 
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Figures 1 and 2 trace the variation in the largest Lyapunov 

exponent with the mean variance of feed stream noise for a 

uniform distribution and an optimal distribution S. cervisiae 

cells. In both cases the bioreactor loses stability as the 

variance crosses a threshold value �indicated by λ��� � 0�. 

This threshold decreased with increasing values of the glucose 

concentration; a possible explanation for this trend is that the 

inflow of noise has a smaller effect for low concentrations 

since here the glucose has a weaker role in the metabolic 

reactions. However, this does not ipso facto suggest 

maintaining a high concentration in the reactor because 

glucose becomes inhibitory at high concentrations (Crabtree 

effect). Hence the optimum concentration is a balance between 

cell growth inhibition and robustness to noise.  
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Fig. 1. Variation of the largest Lyapunov exponent with the 

variance of the external noise for a uniform distribution of 

immobilized cells. 
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Fig. 2. Variation of the largest Lyapunov exponent with the 

variance of the external noise for a topologically optimum 

distribution of immobilized cells. 

 

One interesting difference between the two sets of plots is 

that for a given inlet glucose concentration, the stability 

threshold is crossed at a smaller mean variance for a uniform 

distribution of cells. The larger variance threshold for an 

optimal distribution has a practically useful consequence. 

Stabilization of a noise-distorted microbioreactor requires 

filtering of the noise such that the mean variance of the noise 

in the filtered inflow stream is below the threshold value. 

Hence a large threshold requires less rigorous filtering, which 

is easier to implement. 

Figure 3 displays the fractional change in λmax between the 

two types of reactors at different values of the mean variance. 

Here again it is worth observing that the largest fractional 

changes occur approximately in the so-called neural stability 

interval, i.e. the span of variances within which the largest 

Lyapunov coefficient for different inlet glucose concentrations 

crosses the stability threshold. This suggests the biggest gains 

on moving from a uniform distribution to an optimal 

distribution of cells occurs in the vicinity of the stability 

threshold. This is plausible because at low variances it is 

relatively easy to filter the noise such that both 

microbioreactors are as noise-free as desired, whereas at high 

mean variances it is much more difficult to remove the noise, 

and hence both reactors remain substantially noise-affected. 

Variance of the noise (%)

0 2 4 6 8 10

F
ra
c
ti
o
n
a
l 
c
h
a
n
g
e
 i
n
 λ

m
a
x

-4

-2

0

2

4

6

8
Glucose feed=5 mg/L

Glucose feed=30 mg/L

Glucose feed=100 mg/L

Glucose feed=500 mg/L

Datum line 

Neutral stability span

 
 

Fig. 3. Fractional change in the largest Lyapunov exponent 

with the variance of the external noise on moving from a 

uniform distribution to a topologically optimum distribution of 

immobilized cells. 

 

In the preceding paragraph it was stated that at low mean 

variances it is comparatively easy to filter out the noise inflow. 

While this may be true, previous studies [27-29,42] indicate 

that the best performance is obtained not by complete removal 

of noise inflow but by an optimum level of filtering. In other 

words, controlled noise is more favorable than no noise. These 

studies and others [54,55] have attributed this apparently 

paradoxical observation to resonance between the noise 

entering from outside and the noise present inside cells. 

Stochastic resonance has in fact been invoked to explain many 

biological phenomena, thereby enhancing its credibility. 

Resonance between two or more sources of noise by means 

of controlled filtering is now recognized as a major factor in 

the processing of information by nerve cells in the brain [56], 

in the evolution of certain phenotypes that are resistant to 

treatment by drugs [37,57], the movements of populations of 

cells through microtubes in response to chemical stimuli [58] 

and, on a more macroscopic scale, the performances of 

bioreactors with complex microbial reactions [59]. It is of 
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interest to nose that the first application, from the 

neurophysiology area, is the conceptual basis for noise filters 

based on artificial intelligence that have proven to be very 

effective for bioreactors such as those studied in the last 

application [59]. 

Although the applications of noise filters to microreactors is 

at a nascent stage, the few investigations reported suggest 

considerable benefits. While Lee et al. [60] reported transport 

facilitation through coherence resonance in a single nanotube, 

Enomoto and co-workers [61] analyzed an array of microtubes 

for improvement of internal signal transmissions through 

resonant noise filtering. The latter study blends nicely with the 

earlier studies by Moss et al. [56] for sensory information 

processing and Patnaik [58] for chemotactic signal 

transduction, thus establishing persuasive arguments in favor 

of controlled noise as a beneficial factor for microbioreactor 

operations. On the basis of the present results of the raw 

effects of external noise, the next communication will report 

on filter designs and their effects. 

 

VI. CONCLUSIONS 

Microreactors sustaining microbial reactors are subject to 

noise from within the cells and from the environment. While 

intra-cellular noise has been understood in some detail, the 

effects of noise from the external environment are not well 

explored. A preliminary analysis of the magnitude and nature 

of their effects is presented in this study. 

 The focus was on stability of a microbioreactor, for which 

the Lyapunov exponent has been presented as a convenient 

and reliable index. For a multi-variable system, negative 

values of the largest Lyapunov exponent, λmax, indicate 

stability and positive values signify instability. The variation 

of λmax with the (mean) variance of the external noise was 

compared for two microbioreactors, one with a uniform 

distribution of immobilized cells of recombinant S. cerevisiae, 

and the other with a topologically optimized distribution [23]. 

The main substrate was glucose, and ethanol and 

glucoamylase were the principal products. 

 For both distributions, λmax increased from negative to 

positive values with increasing variance of the external noise. 

For a given inlet concentration of glucose, the cross-over point 

from a negative to a positive domain was larger for an 

optimum distribution of cells. Since the external noise often 

comprises a mixture of components with different variances, a 

large cross-over threshold implies less stringent filtering of the 

noise; this advantage in a noise-affected situation adds to the 

advantages already shown [23] for a noise-free 

microbioreactor. These results motivate the exploration of the 

effects of noise filtering, which will be part of the continuing 

studies. 

VII. NOMENCLATURE 

DG diffusion coefficient for glucose, m
2
 s

-1
 

DE diffusion coefficient for ethanol, m
2
 s

-1
 D@= diffusion coefficient for total suspended biomass, m

2
 s

-1
 

D@=� diffusion coefficient for plasmid-containing suspended  

  biomass, m
2
 s

-1
 

E  concentration of ethanol in microbioreactor, g l
-1

 

G  concentration of glucose in microbioreactor, g l
-1

 

K1’ saturation constant for µ1, g l
-1

 

K2’ saturation constant for µ2, g l
-1

 

K3 saturation constant for µ3, g l
-1

 

KS saturation constant for k�#"% , g l
-1

 

ka’ enzyme pool regulation constant, -- 

kb’ enzyme pool regulation constant, -- 

kc’ enzyme pool regulation constant, -- 

kd’ enzyme pool regulation constant, -- k�#"%  rate of detachment of immobilized cells, g l
-1

 k�#"&&"  steady state value of k�#"% , g l
-1

 

p  probability of plasmid loss, -- 

PC  total mass of carrier, g 

Xim total concentration of immobilized cells, g l
-1

 X!����maximum value of Xim, g l
-1

 X!���"  active component of Xim, g l
-1

 X!�,  concentration of plasmid-bearing immobilized cells, g l
-1

 

Xf  concentration of suspended (free) biomas, g l
-1

 X3, concentration of plasmid-bearing suspended (free) 

 biomas, g l
-1

 

Vr  total volume of microbioreactor, l Y@/BD  yield coefficient of biomass on glucose for glucose  

  oxidation, g g
-1

 

Y@/BC  yield coefficient of biomass on glucose for glucose  

  fermentation, g g
-1

 YF/@ yield coefficient of ethanol on glucose for glucose  

  fermentation, g g
-1

 Y@/F yield coefficient of biomass on ethanol for ethanol  

  oxidation, g g
-1 

Greek letters 

α2  protein yield coefficient for glucose oxidation, U/g 

α3  protein yield coefficient for ethanol oxidation, U/g 

γ  free (unused) fraction of the carrier, -- 

λ  Lyapunov exponent, -- 

µ1  specific growth of biomass via glucose fermentation, h
-1

 

µ2  specific growth of biomass via glucose oxidation, h
-1

 

µ3  specific growth of biomass via ethanol oxidation, h
-1

 

 

 

VIII. REFERENCES 

[1] Pan G, Garia A, Zhang J (2006) Analog/digital hybrid microfludic chip for 
DNA and RNA analysis. ECE 299.01 Class Project, Duke Univ., 
Durham, U.S.A. 

[2] Giordano B, Ferrance J, Swedberg S, Huhmer A, Landers J (2001) 
Polymerase chain reaction in polymeric microchips: DNA amplification 

in less than 240 seconds. Anal. Biochem. 291: 124-132.  

[3] Jacobson S, Ramsey J (1996) Integrated microdevice for DNA restriction 
fragment analysis. Anal. Chem. 68: 720-723. 

[4] Woolley A, Hadley D, Landr P, de Mello A (1996) Mathies R, Northrup 

M, Function integration of PCR amplification and capillary 
electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 

68: 4081- 4086. 

[5] Hadd A, Raymond D, Halliwell J, Jacobson S, Ramsey J (1997) Microchip 
device for performing enzyme assays. Anal. Chem. 69: 3407-3412 

[6] Luckarift HR, Ku B S, Dordick JS, Spain JC (2007) Silica-immobilized 

enzymes for multi-step synthesis in microfluidic devices. Biotechnol. 
Bioeng. 98: 701-705. 

[7] Lee SH, Lee S, Kim BG, Kim YK (2008) An integrated microfluidic chip 

for the analysis of biochemical reactions by MALDI mass spectrometry. 
Biomed. Microdevices 10:  1-9. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 6, 2012 424



 

 

[8] Spross J, Spinz A (2010) A capillary monolithic trypsin reactor for 

efficient protein digestion in online and offline coupling to ESI and 
MALDI mass spectrometry. Anal. Chem. 82: 1434-1443. 

[9] Yang Z, Zong C, Ju H, Yan F (2011) Streptavidin-functionalised capillary 

immune microreactor for highly efficient chemiluminescent 
immunoassay. Anal. Chim. Acta 706: 143-148. 

[10] Utsumi Y, Asamo T, Ukita Y, Matsui K, Takeo M, Negoro S (2008) 

High sensitive immunoassay for endocrine disrupting chemicals using 
antibody immobilized microcapillary bundle structure. Microsyst. 

Technol. 14: 1399-1405. 

[11] Taly V, Kelly BT, Griffiths AD (2007) Droplets as microreactors for 
high-throughput biology. Chem. Biochem. 8: 263-272. 

[12] Lv Y, Zhang Z, Chen F (2002) Chemiluminescence biosensor chip based 

on a microreactor using carrier as flow for determination of uric acid in 
human serum. Analyst 127: 1176-1179. 

[13] Szita N, Boccazzi P, Zhang Z, Boyle P, Sinskey AJ, Jensen KF (2005) 

Developument of a multiplexed microbioreactor system for high-
throughput bioprocessing. Lab. Chip 5: 819-826. 

[14] Zhang Z, Boccazzi P, Choi HG, Perozziello G, Sinskey AJ, Jensen KF 

(2006) Microchemostat – microbial continuous culture in a polymer-
based, instrumented microbioreactor. Lab. Chip 6: 906-913. 

[15] Lee HLT, Boccazzi P, Ram RJ, Sinskey AJ (2006) Microbioreactor 

arrays with integrated mixers and fluid injectors for high-throughput 
experimentation with pH and dissolved oxygen control. Lab chip 6: 1229-

1235. 

[16] Buchenauer A, Hoffmann MC, Funke M, Buchs J, Mokwa W, 
Schnakenberg U (2009) Microbioreactors for fed-batch fermentations 

with integrated online monitoring and microfluidic devices. Biosensors 
Bioelectronics 24: 1411-1416. 

[17] Samorski M, Muller–Newton G, Buchs J (2005) Quasi-continuous 

combined scattered light and fluorescence measurements: A novel 
measurement technique for shaker microtiter plates. Biotechnol. Bioeng. 

92: 61-68. 

[18] Funke M, Buchenauer A, Schnakenberg U, Mokowa W, Diederichs S, 
Metens A, Muller C, Kensy F, Buchs J (2010) Microfluidic biolector – 

Microfluidic bioprocess control in microtiter plates. Biotechnol. Bioeng. 

107: 497-505. 
[19] Zhang Z, Szita N, Boccazzi P, Sinskey AJ, Jensen KF (2006) A well–

mixed polymer based microbioreactor with integrated optical 

measurements. Biotechnol. Bioeng. 93: 286-296. 
[20] Reis N, Goncalves CN, Vicente AA, Teixeira JA (2006) Proof of concept 

for fast development of industrial bioprocesses. Biotechno.l Bioeng. 95: 

744-753. 
[21] Au SH, Shiih SCC, Wheeler AR (2011) Integrated microbioreactor for 

culture and analysis of  bacteria, algae and yeast. Biomed. Microdevices 

13: 41-50. 
[22] Rahman PK, Pasiray G,  Auger V, Ali Z (2009) Development of a simple 

and low-cost microbioreactor for high-throughput bioprocessing. 

Biotechnol. Lett. 31: 209-214. 
[23] Schapper D, Fernandez RL, Lantz AE, Okkels F, Bruus H, Gernaey KV 

(2011) Topology optimized microbioreactors. Biotechnol. Bioeng. 108: 

786-796. 
[24] Malchow H, Petrovskii SV (2002) Dynamic stabilization of an unstable 

equilibrium in chemical and biological systems. Math. Computer 

Modelling 36: 307-319. 
[25] Zhang X (2008) Three-dimensional cell-based high-throughput screening 

for drug discovery and cell culture process development. Ph.D. 

dissertation, Ohio State Univ., U.S.A. 
[26] van Leeuwen M, Krommenhoek EE, Heijnen JJ, Gardeniers H, van der 

Wielen LAM,  van Gulik WM (2009) Aerobic batch cultivation in 

microbioreactor with integrated electrochemical sensor array. Biotechnol. 
Prog. 26: 293-300. 

[27] Patnaik PR (2005) Application of the Lyapunov exponent to detect 

noise–induced chaos in oscillating microbial cultures. Chaos Solitons 
Fractals 26: 759-765. 

[28] Patnaik PR (2005) The extended Kalman filter as a noise modulator for 
continuous yeast cultures under monotonic, oscillating and chaotic 
conditions. Chem. Eng. J. 108:  91-99. 

[29] Patnaik PR (2005) Application of the Lyapunov exponent to evaluate 

noise filtering methods for a fed-batch bioreactor for PFB production. 
Bioautomation 9: 1-14. 

[30] Win SS, Impoolsup A, Noomhorm A (1996) Growth kinetics of 

Saccharomyces cerevisiae in batch and fed-batch cultivation using 
sugarcane molasses and glucose syrup from cassava starch. J. Ind. 

Microbiol. Biotechnol. 16: 117-123. 

[31 Patnaik PR (2003) Oscillatony metabolism of Saccharomyces cerevisiae: 

An overview of mechanisms and models. Biotechnol. Adv. 21: 183. 
[32] Jones KD & Kompala DS (1999) Cybernetic model of cell growth 

dynamics of Saccharomyces cerevisiae in batch and continuous cultures. 

J. Biotechnol. 71: 105. 
[33] Borrvall T & Petersson J (2003) Topology optimization of fluids in 

Stokes flow. Int. J. Numer. Meth. Fluids 41: 77-107. 

[34] Branyik T, Vicente AA, Kuncova G, Podrazky O, Dostalek P, Tiexeira J 
(2004) Growth model and metabolic activity of growing yeast biofilm on 

the surface of spent grains: A biocatalyst for continuous beer 

fermentation. Biotechnol. Prog. 20:  1733-1740. 
[35] Elowitz  M, Levine A, Siggle E, Swain p (2002) Stochastic gene 

expression in a single cell. Science 297: 1183-1186. 

[36] Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic 
contributions to stochasticity in gene expression. Proc. Natl. Sci. U.S.A. 

99: 12795 – 12800. 

[37] Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene 
expression: from theories to phenotypes. Nat. Rev. Genet. 6: 451-464. 

[38] Longo D, Hasty J (28 Nov. 2006) Dynamics of single-cell gene 

expression. Mol. Systems Biol. 64. doi: 10.1038/ msb 4100110. 
[39] Raj A, van Oudenaarden A (2009) Single-molecule approaches to 

stochastic gene expression. Anal. Revs. Biophys. 38: 255-270. 

[40] Gnoth S, Kuprijanov A, Simutis R, Lubbert A (2010) Simple adaptive pH 
control in bioreactor using gain-scheduling methods. Appl. Microbiol 

Biotechnol. 85: 955-964. 

[41] Czeczot J, Metzger M, Babany JP, Nihtila M (2000) Filtering in adaptive 
control of distributed parameter bioreactors in the presence of noisy 

measurements. Simulation Practice Theory 8: 39-56. 
[42] Schmidt FR (2005) Optimization and scale-up of industrial fermentation 

processes. Appl. Microbiol. Biotehnol. 68: 425-435. 

[43] Patnaik PR (2007) Fractal analysis of the attenuation of noise inflow to 
bioreactors under monotonic, oscillating and chaotic conditions. Int. J. 

Chem. Reactor Eng. 5: A 23. 

[44] Riascos CAM, Pinto JM (2004) Optimal control of bioreactors: a 
simultaneous approach for complex systems. Chem. Eng. J. 99: 23-34. 

[45] Patnaik PR (2006) External, extrinsic and intrinsic noise in cellular 

systems: analogies and implications for protein synthesis. Biotechnol. 
Mol. Biol. Rev. 1: 123-129. 

[46] Rosenfeld M, Young JW, Alon U, Swain P, Elowitz MB (2005) Gene 

expression at the single cell level. Science 307: 1962-1965. 
[47] Acar MB, Becskei A, van Oudenaarden A (2005) Enhancement of 

cellular memory by reducing stochastic transitions. Nature 435: 228-231. 

[48] Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic 
gene networks: cell differentiation by graded to binary response 
conversion. EMBO J 20: 2528-2535. 

[49] Sandri M, Numerical calculation of Lyapunov exponents. Mathematical 
J. 6 (1996) 78-84. 

[50] Sprott JC, Chaos and Time-Series Analysis. Oxford Univ. Press (2003) 

pp.116-117. 
[51] Weisstein EW, Lyapunov characteristic exponent. MathWorld-A 

Wolfram Web Resource. 

http://mathworld.wolfram.com/LyapunovCharacteristicExponent.html 
(2012). 

[52] Madyastha VK, Prasad V, Mahendraker V (2011) Reduced order model 

monitoring and control of a membrane bioreactor system via delayed 
measurements. Water Sci. Technol. 64: 1675-1684. 

[53] Trailovic L, Pao LY (2012) Variance estimation and ranking of Gaussian 

mixture distributions in target tracking applications. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doc=?doi=10.1.1.15.6815.p

df. 

[54] Chen L, Wang R, Zhou T, Aihara K (2005) Noise-induced cooperative 
behavior in a multi-cell system. Bioinformatics 21: 2722-2729. 

[55] Kiss IZ, Zhai Y, Hudson JL, Zhou C,  Kurhs J (2003) Noise enhanced 

phase synchronization and coherence resonance in sets of chaotic 
oscillators. Chaos 13: 267-278. 

[56] Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory 
information processing: a tutorial and review of application. Clin. 
Neurophysiol. 115: 267-281. 

[57] Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial 

persistence as a phenotypic switch. Science 305: 1622-1625. 
[58] Patnaik PR (2009) A feasibility analysis of bacterial chemotaxis under 

the influence of external noise. J. Biochem. Technol. 2: 119-125. 

[59] Patnaik PR (2009) Cognitive optimization of microbial PHB production 
in an optimally dispersed bioreactor by single and mixed cultures. 

Bioprocess Biosyst. Eng. 32:  557-568. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 6, 2012 425



 

 

[60] Lee CY, Choi W, Han J-H, Strano MS (2010) Coherence resonance in a 

single-walled carbon nanotube ion channel. Science 329: 1320-1324. 
[61] Enomoto A, Moore Mj, Suda T, Oiwa K (2011) designing of self-

organizing microtube networks for molecular communication. Nano 

Commun. Networks 2: 16-24. 

 

 

 
Pratap R. Patnaik was born at Cuttack in India on 25 January 1950. He 
obtained the Bachelors and Masters degrees in Chemical Engineering from the 

Indian Institute of Technology (IIT), Kanpur, in 1971 and 1973 respectively. 

Then, after three years work experience, he registered at the IIT, Madras, in 
India in 1976, securing a Ph.D. in Chemical Engineering in 1980, with 

specialization in chemical reactor dynamics. 

Following his Ph.D., he has worked in leading universities and research 
institutes  in India, England and Germany. These include the Regional 

Research Laboratory, Hyderabad, the National Chemical Laboratory, Pune, 

the Central Leather Research Institute, Madras, the Institute of Microbial 
Technology, Chandigarh, and the C V Raman College of Engineering, 

Bhubaneswar, all in India. In the U. K. he has worked at the Universities of 

Salford and Newcastle. He was a visiting fellow at the Max Planck Institute 
for Complex Dynamic Technical Systems in Germany. He has also worked 

two years in the Fertilizer Corporation of India, gaining valuable practical 

experience.  
 Dr. Patnaik’s research areas cover the dynamics and optimization of 

bioreactors, and applications of artificial intelligence to microreactors and 

bacterial chemotaxis. He has published nearly 170 research papers and 
contributed two chapters to a book. Dr. Patnaik is an elected Fellow of the 

Indian Institute of Chemical Engineers and The Institution of Engineers 

(India) and a Member of the Indian Biophysical Society. 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 3, Volume 6, 2012 426




