
 

 

 
Abstract—All living cells need to sense and respond to their 

environment. Cells communicate with each other through 
extracellular signaling molecules [1]. Signal transduction is the 
process by which information from an extracellular signal is 
transmitted from the plasma membrane into the cell and along an 
intracellular chain of signaling molecules to stimulate a cellular 
response. Many situations have been reported where altered signaling 
pathways produce dramatic changes in cell survival, cell 
proliferation, morphology, angiogenesis, longevity, or other 
properties that characterize cancer cells. Signal transduction 
abnormalities have been linked to the development of many serious 
disorders, such as chronic myelogenous leukemia and Alzheimer’s 
disease [2, 3]. In this study, a model with delay of the signal 
transduction process is analyzed. After showing that the model 
admits positive solutions, we derive conditions on the system 
parameters which give rise to different dynamical behaviors which 
could be expected in the signaling pathway under the impact of 
delays. Numerical simulations are carried out and discussed in 
support of the theoretical analysis. We found that the system changes 
its dynamic behavior from stable to unstable around the system’s 
steady state when the delay increases in value so that it crosses a 
critical value via a Hopf bifurcation and bifurcation of a family of 
periodic solutions can be expected if the delay is in the vicinity of the 
critical value. Numerical simulations are carried out to support the 
theoretical predictions concerning various dynamical behaviours 
permitted by different values of the amplification effect delay. 
 

Keywords—signal transduction, delayed response, system 
stability, bifurcation, oscillations. 

I. INTRODUCTION 

CCORDING to the American Cancer Society [4], 
“Cancer is a group of diseases characterized by 
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uncontrolled growth and spread of abnormal cells. If the 
spread is not controlled, it can result in death. Cancer is 
caused by both external factors (tobacco, infectious 
organisms, chemicals, and radiation) and internal factors 
(inherited mutations, hormones, immune conditions, and 
mutations that occur from metabolism). These causal factors 
may act together or in sequence to initiate or promote 
carcinogenesis. Ten or more years often pass between 
exposure to external factors and detectable cancer. Cancer is 
treated with surgery, radiation, chemotherapy, hormone 
therapy, biological therapy, and targeted therapy.” 

A common characteristics of all cancers is the unrestrained 
proliferation of cancer cells which eventually spread to other 
parts of the body through the blood and lymph systems, 
invading normal tissues and organs and leading to death of the 
patient. In cancer cells, the signaling pathway is often altered 
and results in a phenotype characterized by uncontrolled 
growth and increased capability to invade surrounding tissue 
[5]. 

All living cells need to sense and respond to their 
environment. Cells communicate with each other through 
extracellular signaling molecules [1]. Extracellular signaling 
can travel a short distance and stimulate cells that are near to 
the origin of the signal, or they can travel throughout the 
body, capable of stimulating cells that are far away from the 
source of the signal [6]. 

A common feature in all signal transduction pathways is 
that a component in the environment is recognized, typically 
by a protein in the plasma membrane. The environmental 
trigger is called the ligand, and the plasma membrane protein 
is called the receptor. The receptor usually spans the 
membrane, and binding to the ligand on the extracellular side 
triggers a change that activates its function on the intracellular 
side. The part of this process is called signal transduction [7]. 

Signal transduction is the process by which an 
extracellular signal molecule activates a membrane receptor 
that in turn alters intracellular molecules to stimulate a 
response. Extracellular signaling molecules are synthesized 
and secreted by signaling cell and produces a specific 
response only in target cells that have receptors for the 
signalling molecule. Binding of the extracellular signalling 
molecules causes a conformational change in the receptor that 
initiates a sequence of reactions in the target cell leading to a 
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change in cellular response [1]. After a signal transduction 
pathway has been initiated and the information has been 
“transduced” to give rise to other cellular processes, the 
signalling processes must be terminated. As observed by 
Biancoa et al. [10], without such termination, cells lose their 
responsiveness to new signals. Signal processes that fail to 
properly terminate can lead to uncontrolled cell growth and 
the possibility of cancer [10]. 

Signal transduction pathways commonly are named based 
on the general class of receptor involved, (e.g., GPCRs, 
receptor tyrosine kinases), the type of ligand (e.g. TGFβ, Wnt, 
Hedgehog), or as key intracellular signal transduction 
component (e.g., NF– B ) [1]. Several recent research reports 
have studied models of signal transduction pathways. 

In 2001, Huse et.al. [11] studied the TGFβ receptor 
signaling pathway. They studied the molecular mechanism of 
receptor activation using a homogenously tetraphosphorylated 
form of the type I TGFβ receptor (TGFβ–I), prepared using 
protein semisynthesis. In their work, phosphorylation activates 
TGFβ–I by switching the Gs region from a binding site for an 
inhibitor into a binding site for substrate. 

In 2003, Wiliams et.al. [12] studied the Hedgehog (Hh) 
signaling pathway. In their work, the basal cell carcinoma 
(BCC) was used to screen for Hh inhibitors and test their 
validity as potential treatments for BCC. They identified a 
novel small molecule Hh inhibitor (CUR61414) that can block 
elevated Hh signaling activity resulting from oncogenic 
mutations in Patched–1. Furthermore, CUR61414 can 
suppress proliferation and induce apoptosis of basaloid nests 
in the BCC model systems, and having no effect on normal 
skin cells. These results demonstrate that the use of Hh 
inhibitors could be a valid therapeutic approach for treating 
BCC. 

In 2005, Wistrand et.al. [13] studied the G–protein 
coupled receptors (GPCRs) signaling pathways. They 
analyzed a divergent set of GPCRs and found distinct loop 
length patterns and differences in amino acid composition 
between cytosolic loops, extracellular loops, and membrane 
regions. A hidden Marcov model, GPCRHMM, was 
configured to fit the features and trained it on a large dataset 
representing the entire superfamily. They applied GPCRHMM 
to five proteomes and detected a large number of sequences 
that have no other annotation. The results from Caenorhabditis 
elegans are particularly interesting, and include a large 
number of sequences with no annotation, which are prime 
candidates for being previously undetected GPCRs. 
GPCRHMM gave strong negative predictions to a family of 
arthropod-specific odorant receptors believed to be GPCRs. 

In 2008, Shin et.al. [14] studied the signal transduction 
through the extracellular signal–regulated kinases (ERKs) 
pathway. They considered feedback loops in ERK signaling 
pathway, such as negative and positive feedback loops. They 
showed that the negative feedback loop of the ERK pathway 
had a crucial role in generating an oscillatory behavior of 
ERK activity. The positive feedback loop in which ERK 
functionally inactivates Raf kinase inhibitor protein also 
raised the oscillatory pattern of ERK dynamic. Therefore, the 
combination of positive and negative feedback loops were 

crucial to produce the dynamic characteristics of ERK 
activity. 

It is well recognized that many serious diseases, can be 
caused by molecular changes that affect signal transduction 
systems. According to Bronchud et al. [15], in cancer cells, 
the signalling pathway is often altered and results in a 
phenotype characterized by uncontrolled growth and increased 
capability to invade surrounding tissue [15]. In addition, many 
situations have been known where altered signalling pathways 
produce dramatic changes in cell survival, cell proliferation, 
morphology, angiogenesis, longevity, or other properties that 
characterize cancer cells [15]. 

Since G protein coupled receptors (GPCRs) constitute the 
largest family of cell surface receptors and they mediate most 
responses to signals from other cells, we shall use G protein 
pathways as a model of the signal transduction process.  

The work of Levchenko and Iglesias [8] studied the signal 
transduction pathway in the social amoebae Dictyostelium 
Discoideum. The original idea of mathematical model of 
signal transduction can be found in their work.  We can see 
how the model was logically formulated according to 
biological principle and biochemical mechanism. 

In 2003, Iglesias [9] studied the role of feedback control 
mechanism in the cell signaling pathway associated with the 
chemotaxis in D. Discoideum. His study proposed the model 
of the signaling pathway of D. Discoideum involving cAMP 
was as follows: 

1 2
  

dI
a I a S

dt
 (1) 

2

4

3 62

5
( )

   


dS a S
a S a

dt a S I
 (2) 

where I  and S  represent the concentration of the inhibiting 
agent and the external signal, respectively. In the work of 
Iglesias [9], the sufficient condition was given for which the 
equilibrium is stable and it was also shown that the system 
may exhibit a stable limit cycle. 

 
In the work of Rattanakul et al. [16] a model was proposed 

for the signal transduction pathway, involving the G protein 
coupled receptors (GCPRs), that consists of a system of two 
differential equations governing the interaction between the 
inhibitor protein and the ligand–receptor complexes as 
follows: 

     
dI

S t I t
dt

   (3) 
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  
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 
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2
   



S t S tdS
S t

dt S t wS t I

 
 


 (4) 

In 2011, Sarika et al. [17] modified the above model of the 
signal transduction pathway by incorporating two time delays 

I  and S . Their model for the signal transduction process 

consists of the following equations: 
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   SS t I t
dI

dt
     (5) 
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2

2
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  I

S t S tdS
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dt S t wS t I t

 
 

 
 (6) 

We add to the results of the above works by investigating 
the system’s stability and, through a bifurcation analysis, the 
existence of sustained oscillations, utilizing the techniques in 
earlier investigations and modeling efforts of Kaddar [18, 19]. 

In this work, the following events are considered. The 
signal amplification of the ligand–receptor complex is due to 
the secondary hormone with a time delay. In [7], the 
concentration of the secondary hormone was found to depend 
on S and I as in the second term on the right of equation (2). 
We therefore incorporate a delay into this term. 

We also consider that the ligand–receptor complex is 
removed from the system in response to how high its level is 
with a delay in time. Thus, assuming that the delays are the 
same in both these responses, we incorporate the time delay   

into the model system (3)–(4) to arrive at the following 
equations: 

     
dI

S t I t
dt

   (7) 

 
    

 
 

2

2


  
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S t S tdS

dt S t wS t I t
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

  
 

              S t    (8) 

where the first term on the right of (7) is the production rate of 
the inhibiting protein in response of the increase in the ligand–
receptor complexes and the second term is the removal rate of 
the inhibiting protein. The first term on the right of (8) is the 
zero order production rate of the ligand–receptor complexes, 
the second term accounts for the amplification effect on the 
production of the ligand–receptor complexes due to the 
secondary hormone with a delay  , the third term on the right 
of (8) is the rate at which the ligand–receptor complexes is 
internalized through the cell membrane and the last term is the 
removal rate of the ligand–receptor complex depending on the 
level of the complex at   units of time earlier. 

II. PHYSICALLY MEANINGFUL SOLUTION 

Clearly, the smoothness of the functions 1 2and f f  

guarantees the global existence and uniqueness of solutions to 
the system (7)-(8). We now show that the model system 
admits positive solutions for each positive initial condition 
and small enough removal rate constant  . 

 
Theorem 1 For each given initial condition such that 

( ) 0I t , and ( ) 0S t  on the initial interval  ,0 , the model 

system (7)-(8) admits positive solution, provided that   is 

sufficiently small. 

Proof. Due to the continuity of the solution of the model 
differential equations, ( )S t  would become non-positive if 

there existed 0 0t  such that 

 0( ) 0S t  and ( ) 0S t  

for any t, 00  t t . Then, we would have 

 0( ) 0 S t  

However, if  

 
0( )


S t





 

then, (8) gives 

 
    

 
 

0 0
0

0
0 0

2
( )

2


   
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S t S t
S t

S t wS t I t

  


  
 

  0 0  S t   

which contradicts the fact that 0( ) 0 S t . 

Similarly, by solution’s continuity, ( )I t  would become 

non-positive if there existed a 1 0t  such that 1( ) 0I t  and 

( ) 0I t  for any t, 10  t t . 

Then, necessarily, 1( ) 0 I t , which means, from (7), that 

     1 1 1

1

0


   
t t

dI
S t I t S t

dt
    

which contradicts the above proven fact that S never becomes 
non-positive.                    

III. STEADY STATE AND LOCAL STABILITY 

We next discuss the local stability of the delay model (7)–
(8) for the signal transduction process which governs the 
interaction between the ligand–receptor complexes ( )S t  and 

the inhibiting protein  I t  discussed in the previous section. 

The system (7)–(8) always admits a positive equilibrium
  * * *,E I S , where 0  I S , according to the following 

equations. 
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In what follows, we let 
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Letting  x I I  and 
 y S S , linearization of the 

system (7)–(8) around the equilibrium
 

 * * *,E I S  yields 
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The characteristic equation associated to system (7)–(8) is 

   2 exp exp 0,      p s r q      (13) 

where 
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The determination of local stability of the steady state E  
is a result of the localization of the roots of the characteristic 
equation (13). 

In order to investigate the local stability of the steady state, 
we begin by considering the case without delay 0 . In this 
case, the characteristic equation (13) reduces to 

  2 0,    p s r q   (14) 

where 

   

 

3

2

2

2
,

.

 

  



    
 

  


w S I
p s

S w S I
w

r q
S w

 
 






 

If 1 1R , we obtain 
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and since 

 2
0,


   



w
r q

S w


  

according to the Routh Hurwitz criterion, we have the 
following proposition. 

Proposition 2 For 0 , the steady state E  is locally 

asymptotically stable if and only if 1 1R . 

We now return to the study of equation (13) with 0 . 
We first prove the following theorem. 

Theorem 3 If 0 1R  and 1 1R , then the equilibrium E  is 

locally asymptotically stable for all 0 . 

Proof. From the hypotheses 0 1R
 
and 1 1R , the roots of 

characteristic equation (13) have negative real parts for 0  
by Proposition 2. 

Suppose that the characteristic equation (13) has a purely 
imaginary root i , with   real and positive. Then, by 
separating real and imaginary parts of both sides of equation 
(13), we have 

2 sin( ) cos( ) 0   r s q     (15) 
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Since for 0 1R and 1 1R , we have
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Then, equation (17) has no positive solution for 0 1R  

and 1 1R . This concludes the proof.                                     

 
Theorem 4 If  

 0 1R  (18) 

 1 1R  (19) 

hold, then there exists a 0 0
 
such that, when  00, 

 
the 

equilibrium E  is locally asymptotically stable, when 0  , 
E  is unstable when 0  , equation (13) has a pair of 

purely imaginary roots 0i ,with 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 5, Volume 6, 2012 673



 

 

 2 2 2

0

1
2

2
   s r p  

            1 / 222 2 2 22 4     


s r p r q  (20) 

and 

 
 2 2

0 0

0 2 2 2

0 0

1
arccos ,

 
 



 
  
 

ps r q

s q

 


 
 (21) 

where , , ,  and p s q r are as defined in (13). 

Proof. According to the proof of Theorem 3, when 0  , 

0i
 
is a purely imaginary root of the characteristic equation 

(13) if 
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which leads to 
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Solving (24) for 2

0 , we have 
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

s r p r q  

From the expression of r  and q , we have 0 r q  and 

under the hypothesis 0 1R , we have 

   2 2
0

 
  

 
  

 
  
 

w w

S w S w
r q

 
    

Hence, we obtain 
2 2 0 r q  

when 0 1R . Therefore, there are two purely imaginary roots 

0i  with 0 0 . 

The critical value of the delay 0  is determined in the 

usual way by the equations (22) and (23). We obtain 

     2 2 2 2 2

0 0 0 0 0cos .    r q ps s q      

Therefore, the delay 0  
is defined by 

 2 2

0 0

0 2 2 2

0 0

1
arccos

 
 



 
  
 

r q ps

s q

 


 
.          

IV. HOPF BIFURCATION 

From Theorem 4, we have the following result. 
Theorem 5 Suppose (18), (19) and 

 
   

2 2

2

3 2

4  

  
 

 

   
   
   
   

S I w

S I S w

 



 (25) 

hold. Then there exists 0 0  such that for each 00    , 

system (5)–(6) has a family of periodic solutions  P P   

with period  T T  , for the parameter values      

such that    
0

2
0 0, 0 P T




 and  

0
0 .   

Proof. We show that 0i  is simple, by considering the branch 

of the characteristic root        i      , of the 

characteristic equation (13), bifurcating from 0i
 
at 0  . 

By differentiating equation (13) with respect to the delay  , 
we obtain 

      2 exp exp     
d

p s s q
d


    


    exp 0.   s q    (26) 

Suppose, by contradiction, that 0i  is not simple, then 

    exp 0  s q    (27) 

Substituting 0 i   with 0 0 , equation (27) yields 

 0 0 si q  (28) 

This leads to a contradiction to the fact that 

 3

2
0

2

 

 
   



S I
s

S I

 



 and 0. q   

From equation (26), we have 

 
   

 

1
2 exp

  
 


 
 
 

p sd

d s q

  
   

 (29) 

and from equation (13), we have 

  
2

exp .


 
 

s q

p r




 
 (30) 

Hence, by substituting (30) into (29), we obtain 

 
  

1 2

2

2
    
 

  
 
 
 

d s q pq sr

d s q p r

   
    

 (31) 

Since 

  1

0 0

Re
sign = sign Re ,



 

 
 
 

d d

d d   

 
 

 

by substituting 0 i   into (31), we obtain 

 
0

Re
sign



d

d  




 

 
     

2 6 2 4 2 2 2 2 2 2

0 0 0

2 24 2 3

0 0 0 0

2 2
= sign

   

    

 
 
 
 

s q p q s r q r

s pq sr ps q qr

  

   
 

Under the hypotheses (18), (19) and (25) we have 

2 22 0  s r p  

and 
2 2 0. r q  

Therefore, 

 
0

Re
0.




d

d  




 

The proof is complete.               
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V. NUMERICAL SIMULATION 

In this section, we present a numerical simulation of the 

model system with the following parametric values: 

0.3, 0.7, 0.1, 0.3,

0.5, 0.5, 0.1, 0.9.

   

   w

   

  
 

System (7)–(8) has a unique positive equilibrium 

 * 0.0661,0.3085E . It follows from Theorem 3 that the 

critical positive time delay 0 1.6933 . 

 

 
 

Fig. 1 For 0 , the solution     ,I t S t of the system (7)–

(8) is asymptotically stable and converges to the equilibrium 
*

E . 
 

 
 
Fig. 2 Computer simulation of the model system in the case 
seen in Fig. 1, showing the inhibiting protein eventually 
tending to the steady state value. 
 
 

Thus, we know that when *

00 ,  E   is asymptotically 

stable. Fig. 1 shows a numerical simulation of the model 

system when 0 , and the solution     ,I t S t of the 

system (7)–(8) are asymptotically stable and converge to the 

equilibrium 
*

E . Fig 3 and 4 show the corresponding time 
series of the solution seen in Fig. 1, converging to the steady 
state values as time passes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 3 Computer simulation of the model system in the case 
seen in Fig. 1, showing the level of the ligand-receptor 
complex eventually tending toward its steady state value. 

 
From Theorem 4, when   passes through the critical value 

0 , *E  loses its stability and a family of periodic solutions 

with period 10.0867T  bifurcating from *E  exists. Fig. 4 
shows the numerical simulation of the model system in this 
case where the solution trajectory tends toward the limit cycle 
as theoretically predicted. 

In Fig. 5 and 6, the corresponding time series of the 
densities of the inhibiting protein and the ligand-receptor 
complex, respectively, are shown to become periodic as time 
progresses. This numerical result confirms the theoretical 
prediction in Theorem 4. In such a situation, both state 
variables eventually exhibit sustained oscillation. This closely 
resembles qualitatively the experimental data on these factors 
reported in the literatures [20-22]. 

Most experimental or clinical data show the concentrations 
of these variables to eventually tend, often in an oscillatory 
fashion, toward the steady state values. Our analysis shows 
that the signal transduction process can admit sustained 
oscillation as a result of the amplification effect from the 
system’s secondary hormone, provided that the responsive 
delay is large enough, but still remains in the vicinity of the 
critical value * , provided certain conditions are satisfied, 
specifically, conditions (16), (17), and (23). 
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Fig. 4 When 

0
1.6933 , a Hopf bifurcation occurs and a 

periodic solution appear as a limit cycle in the phase plane. 

Here the period is  0 10.0867T . 

 
Fig. 5 Computer simulation of the model system in the case 
seen in Fig. 1, showing the inhibiting protein eventually 

becomes periodic with period  0 10.0867T . 

 
Fig. 6 Computer simulation of the model system in the case 
seen in Fig. 1, showing the level of the ligand-receptor 
complex eventually becomes periodic with period 

 0 10.0867T . 

 
 

Fig. 7 For 3.5 , the equilibrium *E  of the system (7)–(9) 
is unstable. The solution trajectory tends towards the 
equilibrium point as time passes. 

 
When the delay   becomes too large, the system can 

become unstable under certain conditions. This can give rise 
to situation which is medically difficult to control. It is 
important for the physicians to be able to predict such events, 
so that preventive steps may be taken to avoid undesirable 
symptoms. 

Fig. 7 shows a computer simulation of the model system 
when 3.5 *    in which case the solution trajectory 
diverges away from the equilibrium point and becoming 
unbounded. 

The corresponding time series of the inhibiting protein and 
the ligand-receptor complex are shown in Fig. 8 and 9. 
 

 
 
Fig. 8 Computer simulation of the model system in the case 
seen in Fig. 7, showing the inhibiting protein eventually 
becoming unbounded. 
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Fig. 9 Computer simulation of the model system in the case 
seen in Fig. 1, showing the level of the ligand-receptor 
complex eventually becoming unbounded. 

VI. CONCLUSION 

According to the World Health Organization, cancer is the 
world’s second biggest killer after cardiovascular diseases [23, 
24]. Cancer killed 7.6 million people in 2005. By 2015, that 
number is expected to rise to 9 million and increase further to 
11.5 million in 2030. Every year, at least 7 million people die 
from cancer, more than HIV/AIDS, malaria and tuberculosis 
combined. The main types of cancer leading to overall cancer 
deaths each year are lung, stomach, liver, colorectal and breast 
cancer [23, 24, 25]. 

The abnormalities of the signal transduction pathway can 
also lead to the other human disorders. For example, in the 
RAS/mitogen–activated kinase pathway, the proteins 
implicated in signal transduction from cell surface receptors 
via the RAS pathway, such as Grb2 and SOS–1, were altered 
in cases of Alzheimer's disease [26]. Furthermore, the 
abnormality of G–protein coupled receptor signaling pathways 
causes many diseases. According to Spiegel et al. [27], in this 
signaling pathway, both decrease and increase in signal 
transduction activity can lead to human diseases such as 
retinitis pigmentosa, sporadic pituitary and thyroid tumors 
,adrenal and ovarian tumors. In the case of decreased signal 
transduction capability, diseases are caused by reduced 
expression of G–protein due to defective synthesis and/or 
membrane targeting, impaired activation of G–protein, and 
decrease in the time that G–protein remains in an active state 
due to increased desensitization or GTPase activity, 
respectively. In other case, increased signal transduction 
capability, diseases also arise from over expression of G–
protein, inappropriate activation of G–protein and increase in 
the time that G–protein or effector remains in an active state 
due to decreased desensitization or GTPase activity [27]. For 
this reason, better understanding of the processes of the signal 
transduction pathway has been a subject of intense 

investigation. Several recent studies have been proposed and 
studied mathematical models of the signal transduction. 

In this study, we have derived conditions on the system 
parameters which give rise to different dynamical behaviours 
which could be expected in the signalling pathway under the 
impact of delays. We proved that if 0 1R , the equilibrium 

point *E  is locally asymptotically stable for all 0 . We 
have shown that the local stability of the equilibrium point, 

*E , depends on the time delay  . The system changes its 

behaviour from being stable to unstable near *E  when   

crosses the critical value 0  via a Hopf bifurcation and 

periodic solutions bifurcate from *E . Finally, some numerical 
simulations are given to verify our theoretical predictions. 

Our work on this delay differential equations model 
presented in this study and insights gained by our model 
analysis is expected to be of great benefit in interpreting 
experimental data which should motivate the design of 
experiments to confirm our theoretical results which could 
potentially lead to valuable discoveries. 
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