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Abstract- Nonlinear equation solving by without memory iterative 

methods is taken into account in the present research. Recently, 

Khattri and Argyros in [S.K. Khattri, I.K. Argyros, Sixth order 

derivative free family of iterative methods, Appl. Math. Comput. 217 

(2011), 5500-5507], proposed a sixth-order family of derivative-free 

methods including four function evaluations per full cycle to reach 

the index of efficiency 1.565. In this work, we develop new 

derivative-free without memory methods, based on the above-

mentioned work, in which the convergence rates reach the seventh- 

and eighth-order respectively. And subsequently, the index of 

efficiency will be increased to 1.626 and 1.682. This shows that our 

proposed methods are more economic than their work in terms of 

convergence rate and the efficiency index. Moreover, the numerical 

examples are considered to support the theoretical results and put on 

show that the contributions in this paper hit the targets. 
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derivative-free, efficiency index, order of convergence, Steffensens's 

method. 

 

I. PREREQUASITIES 

 

There are many iterative methods to find the simple roots of 

single valued nonlinear equations [5, 6, 9, 10, 11, 13, 18]. It 

could be mentioned that all of them have some strong points 

and drawbacks. For example, the best known iterative method, 

which was given by Newton-Raphson includes one derivative 

evaluation. In application-oriented problems and/or when the 

evaluation of derivatives of the nonlinear functions is not 

possible and/or takes up a high computational time, the use of 

such derivative-involved methods is limited; or they are very 

hard to implement. To remedy this, first Steffensen gave an 

iterative method,                              

       , with two function evaluations and the same 

convergence rate as Newton-Raphson's method.  

       As a matter of fact, he replaced the first-order derivative 

evaluation in the Newton-Raphson's iteration by backward 

finite difference (FD) approximation (or forward FD) of order 

one. Even though the problem of derivative evaluation was 

solved by Steffensen, there exist another problem in the 

attained scheme, that is to say, the convergence rate is only 

two.  

       In addition, by using the definition of efficiency index, 

which was given in the book of Traub [3], the classical 

efficiency index of Steffensen's or Newton-Raphson's schemes 

are            . To overcome on this barrier, many 

researchers have been trying to increase the convergence rate 

and efficiency index of the known methods; see for example 

[1, 7, 8, 15]. In fact, the procedure to construct better schemes 

is to compose some without memory schemes to each other; 

e.g. Newton-Raphson with Newton-Raphson or Steffensen 

with Newton-Raphson, etc., and then approximate the new-

appeared first derivatives of the function by a means of 

already known data.  

       To provide third or fourth order of convergence, one 

should consider a two-step cycle and to give methods of 

orders more or equal than 5 and also less or equal than eight, 

one should take into account of three-step cycles. Such 

iterative methods are also known as multi-point high-order 

iterations [3].  

      In 2011, Khattri and Argyros presented a sixth-order 

family of multi-point derivative-free methods including three 

steps; four parameters (             and    ); and 

four function evaluations as comes next [1] 

 

 

 
 
 
 

 
 
       

       

                  
                                                                                                                                                        

      
           

                  
   

     

     
 

     

           
   

     

     
 

 

   
     

           
 

 

                          

        
           

                  
   

     

     
 

     

           
   

     

     
 

 

   
     

           
 

 

  
     

     
  

     

 

       In this work, we develop (1) by providing seventh- and 

eighth-order derivative-free classes of methods including the 

same number of function evaluations as (1), but with better 

efficiency indices. Due to this, the rest of this research unfolds 

the contents as follows. Section II furnishes new techniques of 

two-parameter without memory iterative methods with 
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seventh-order convergence in details. This section is follows 

by Section III where a new class of derivative-free methods 

will be constructed. The numerical comparisons are made in 

Section IV to reveal the efficacy of the proposed contributions 

in this paper. Finally, Section V is provided to give a 

conclusion. 

 

II. NEW SEVENTH-ORDER TECHNIQUES 

 

Let us consider the one variable function         be 

sufficiently smooth and for simplicity assume that       
     , while     is also taken into account in (1). Note that 

the existing of   is only needed if we try to provide with 

memory iterations, which is not in our scope at the moment. 

However, we use this free parameter in the next section. 

       According to [1], the iteration (1) reaches to the second 

order at the end of the first step; fourth-order at the end of the 

second one; and sixth-order of convergence at the end of the 

third step by using four function evaluations per full cycle. In 

fact, Khattri and Argyros have considered a weight function in 

the third step of (1) to reach the convergence order six.  

       In order to develop (1) and reaches a family of iterations 

with better convergence rate and efficiency index; we propose 

the weight function in the last step in what follows

 

 

                             
     

     
  

 

          
  

     

     
 

 

 
     

     
  

     

     
  

     

     
                  

 

wherein       and          is the divided difference 

which can be described as          
           

     
. Thus, using 

(2) and for simplicity      , we attain the following 

three-step without memory iterative family of bi-parametric 

methods for solving one variable nonlinear equations

 

 

 
 
 
 

 
 
       

     

        
                                                                                                                                                                         

      
     

        
   

     

     
 

     

     
                                                                                                                                  

        
     

        
               

     

     
  

 

          
  

     

     
 

 

 
     

     
  

     

     
  

     

     
  

         

 

      Theorem 1 indicates that (3) possesses the seventh-order of 

convergence. 

 

Theorem 1. Let us consider   as the simple zero of the 

nonlinear equation        in the domain  . And assume 

that      is sufficiently smooth in the neighborhood of the 

root, i.e.  . Then, the derivative-free iterative family which is 

defined by (3) is of order seven and satisfies in the following 

error equation 

 

 

      
 

  
          

                 
                                           

   
                                                  

      
                         

 

wherein                         ,         and 

    are two real valued free parameters. 

 

Proof. Using Taylor's series and symbolic computation; we 

can determine the asymptotic error constant of the three-step 

without memory family of methods (3). Now we expand 

      about the simple zero  . Hence, we have 

 

               
      

      
      

      
      

  

     
                                               

 

Taking into account of (5), we also have 

 

     

        
   

  
           

 

  
 

 

  
         

         
                       

  
 

  
      

                   
                              

          
                   

      
    

 

By considering (5) and the first step of (3), we obtain 
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       We should expand       around the root and using (6). Accordingly, we have 

 

                 
      

 

  
      

                     
        

                                          

 

      Writing the Taylor's series expansion at the end of the 

second step by using (7), we get that 

 

     
                         

              

  
   

  
 

  
                                  

  

                                    
                  

   
   

                
   

        
  

       
                                                     

 

Additionally, we have 

 

      
                         

              

  
   

  
 

  
                                  

  

                                    
                  

   
   

                
   

        
  

       
                          

 

      At this time it is required to find the Taylor's series 

expansion of the proposed weight function (2) about the 

simple root. Therefore, we have 

 

                     
 

  

     
  

    
                  

  

  
  

 

  
 
         

                 

                                       
            

                                     
        

                             

 

Consequesntly, using (8), (9) and (10) results in 

 

             
 

  
          

                 
                                   

           
                                                  

      
              

 

which shows that our bi-parametric family of derivative-free 

without memory methods reaches the convergence rate seven 

by consuming only four function evaluations per full cycle. 

This completes the proof.   

 

Taking into account (3), and the number of 

evaluations per full cycle; we obtain that the efficiency index 

of (3) is           , which is bigger than that of (1), i.e. 

1.565 and lots of other available derivative-free methods in 

literature. This shows that our proposed scheme is more 

economic than (1) in terms of the convergence rate and 

efficiency index for finding simple root. That is to say, with 

the same number of evaluations with (1), we have provided a 

more robust scheme. To have a more simplified version of (3), 

if we consider      , then we attain the following three-

step without memory method 

 

 

 
 
 
 

 
 
       

     

        
                                                                                                                                 

      
     

        
   

     

     
 

     

     
                                                                                          

        
     

        
               

     

     
  

 

          
  

     

     
 

 

 
     

     
  

                                     

 

where its error equation can be given as comes next 
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III. NOVEL OPTIMAL EIGHTH-ORDER METHODS 

 

The only problem with the family of iterations given in the 

previous section is that, its computational efficiency is less 

than that of optimal three-step without memory iterations in 

the sense of Kung and Traub [2]. Therefore, it would be 

interesting from practical and analytical point of view to 

increase the order of convergence from seven to eight without 

forcing more function evaluations per full computing step. 

Toward this new goal, we make use of weight function 

approach.  

      We consider the following very general three-step four-

point without memory iteration including one free non-zero 

parameter. As we mentioned before, this parameter is so much 

useful in building with memory high order iterations. 

 

 
  
 

  
       

     

        
                                                          

      
     

        
   

     

     
 

     

     
                                            

        
     

        
   

     

     
    

     

     
    

     

     
   

  

     

 

      Clearly, iteration class (14) requires four function 

evaluations and is free from any derivative evaluation in 

seeking for the simple roots of nonlinear scalar equations. 

Thus, now the weight functions in (14) should be chosen such 

that the class (14) hits the eighth-order of convergence and be 

optimal in the sense of Kung and Traub. This is done in 

Theorem 2. 

 

Theorem 2. Let us consider   as the simple zero of the 

nonlinear equation        in the domain  . And assume 

that      is sufficiently smooth in the neighborhood of the 

root, i.e.  . Then, the derivative-free iterative class, which is 

defined by (14) is of order eight when  

 

 
 
 

 
 

                                                        

                                                  

                                                                                                          

                                                                                  

                                                                

  

     

 

Proof. Using                         ,        , 

Taylor's series and symbolic computation; we can have the 

similar relation as the proof of the Theorem 1. Thus, here we 

only include the following error equations 
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      This clearly reveals that the weight functions in (14) must 

be chosen as (15) to make the order optimal. Thus, using (15) 

in (14), we can have the following general error equations for 

the optimal three-step derivative-free class (14) 

 

     
 

    
                           

    

                    
               

     
   

                            
       

                                  

                
                         

                                     

            
      

                       

 

      This concludes the proof and shows that our class of 

iteration reaches the optimal convergence order eight using 

four function evaluations.   

 

      Although available high-order derivative-involved 

methods in literature are quite powerful, see e.g [4, 12, 14, 16, 

17], there are many obstacles to using them on real-world 

applications. When someone first implements one of those 

schemes, the most common observations are that some 

derivative information is not available or hardly to calculate. 

Once the method is working, then attention is usually turned to 

the computational derivative evaluation cost, which can be 

prohibitive for medium to large-scale optimization problems. 

But the contribution presented in this research article 

overcomes on this drawback. Now, by considering the 
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condition given in (15) for the weight functions in (14), we 

can produce any eighth-order method free from derivative. 

Some of such optimal schemes are listed below. For example, 

we have 
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Another efficient derivative-free method can be defined as 
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      We can also have the following iteration free from 

derivative from the class (14)-(15) 

 

 
  
 

  
       

     

        
                                    

      
     

        
   

     

     
 

     

     
                    

        
     

        
                                                  

      

 

                 
     

     
              

     

     
 

 

 

                                        
     

     
 

 

 

 
     

     
  

     

     
 

 

              
     

     
  

     

     
 

 

  

 

      As we mentioned above, the free non-zero parameter   

can be chosen to reach better accuracy. In this regard, we 

consider   
 

   
, to produce better root solver without 

derivative computation per full cycle 

 

 
  
 

  
       

     

        
       

 

   
                             

      
     

        
   

     

     
 

     

     
                    

        
     

        
                                                  

      

 

with 

 

        
 

   
         

     

     
    

 
 

   
          

     

     
 

 

     
 

   
           

 
 

   
            

 

   
            

     

     
 

 

 

 
     

     
  

     

     
 

 

    
 

  
         

     

     
  

 

       In terms of computational point of view, each member 

from the class (14)-(15) requires four function evaluations to 

reach the convergence order four. Therefore, it is optimal in 

the sense of Kung and Traub (1974). The optimal efficiency 

index for our contributed class is 1.682.  

 

IV. NUMERICAL REPORTS 

 

In order to demonstrate the accuracy of a method, it is 

necessary to study the numerical results of the presented 

scheme and the schemes available in literature. Khattri and 

Argyros in [1] showed that the performance of (1) is better 

than the sixth-order existing methods in literature. Therefore 

herein, we only compare (12) with (1)-        ,     

and Steffensen's method under a fair situation. The test 

functions, their simple roots and the starting approximations 

are listed in Table 1. 

      Experimental results for our contributed methods from the 

three-step derivative-free class (14)-(15) can give better 

feedbacks, i.e. provide better accuracy than those illustrated in 

Table 2, by choosing very small positive values for  . In fact, 

by choosing very small positive value for  , the error equation 

will be narrowed, as in (22). Also note that, if we approximate 

by an iteration through the data of the first step per cycle, then 

with memory iterations from our class will be attained which 

herein we do not drag the topic into these kind of iterative 

processes. 
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Table 1. Test nonlinear function, their roots and the starting points 

Test Functions Roots Starting points 

                  1.9878112719284984566488037279366485686… 1.97 

              0.9610369414967730615237286599110949112… 0.98 

                   0.517947975980637494267992204184369598… 0.45 

                       1.217890626801970654238566992291492270… 1 

                                2.581711667829765694742300553293398099… 2.8 

                            3.845238953520693454366605119828417436… 5 

                   1.068947758536760226054678150950059868… 1.3 

                               -0.56063741038397049258041123222860129… -0.9 

                         0.969472186368112610071446279236264209… 1 

                          -1.130365453500527510641311728942152770… -1.1 

                   -0.82925270904004231372285114567154234504… -1.5 

                   1.302775637731994646559610633735247973125 1.5 

 

       All computations were performed in MATLAB 7.6 using 

variable precision arithmetic (VPA) to increase the number of 

significant digits. Herein, we accept an approximate solution 

rather than the exact root, depending on the precision of the 

computer. Thus, we have considered the following stopping 

criterion                .  

       The results of comparisons are given in Table 2 in terms 

of the number significant digits for each test function after the 

specified number of iteration, that is, e.g. 0.1e-36 shows that 

the absolute value of the given nonlinear function (  ) after 

three iterations is zero up to 36 decimal places.  

      The computer specifications are: Intel(R) Core(TM) 2 

Quad CPU, Q9550 @ 2.83GHz with 2.00GB of RAM. As we 

can see from Table 2, our contributed methods perform better 

in comparison with relation (1), i.e., it can be even comparable 

with all of the quoted sixth-order methods in [1]. The 

computational order of convergence, namely COC which is 

defined as follows 

 

    
   

    

  
 

   
  

    
 
                                                          

 

where        , is very close to 7 (to at least the fourth 

decimal place) for the our method (12), while it is around 6 for 

(1) and 8 for (20) and (22). This also manifests that the 

illustrative practical results coincide well with the theoretical 

results given in Theorem 1.  

We here remark that, it is widely known that quadratically 

iterative methods such as Steffensen's iterative scheme double 

the number of correct digits in the convergence phase for the 

simple roots. As a matter of fact, if an iterative method 

converges with order  , then after each iteration the number of 

correct significant digits in the approximation increases by a 

factor of approximately  . That is why the high-order methods 

converge faster. Accordingly, our method of order seven 

increases the number of correct significant digits by a factor of 

approximately seven per full iteration. Subsequesntly, this rate 

is around eight for (20) and (22). We also should remark that 

the accuracy of the iterative root solvers completely relies on 

the distance between the starting points and the sought zero, 

i.e. a bad starting approximation may leads to divergency.

 

 
Table 2. Comparison of some derivative-free method 

   Steffensen (1) (12) (20) (22) 

   IT 9 3 3 3 3 

 TNE 18 12 12 12 12 

     0.1e-36 0.1e-21 0.1e-35 0.5e-75 0.1e-937 

   IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.3e-222 0.4e-252 0.1e-362 0.1e-559 0.1e-555 

   IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.1e-401 0.1e-228 0.7e-403 0.1e-691 0.2e-703 

   IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.4e-13 0.2e-30 0.3e-36 0.3e-62 0.6e-27 

   IT 8 3 3 3 3 

 TNE 16 12 12 12 12 
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     0.3e-8 0.1e-11 0.2e-19 0.1e-35 0.1e-299 

   IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.1e-43 0.1e-71 0.2e-87 0.1e-127 0.8e-298 

   IT 9 3 3 3 3 

 TNE 18 12 12 12 12 

     0.1e-73 0.3e-41 0.4e-61 0.8e-94 0.1e-225 

   IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.3e-327 0.7e-227 0.4e-372 0.1e-482 0.6e-273 

   IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.9e-112 0.3e-177 0.2e-198 0.2e-296 0.4e-436 

    IT 9 3 3 3 3 

 TNE 18 12 12 12 12 

     0.1e-232 0.1e-117 0.2e-194 0.6e-304 0.1e-506 

    IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.7e-193 0.2e-103 0.8e-195 0.6e-222 0.3e-141 

    IT 8 3 3 3 3 

 TNE 16 12 12 12 12 

     0.4e-227 0.4e-72 0.7e-104 0.5e-219 0.4e-270 

 

V. CONCLUSION 

 

It is widely known that many problems in different scientific 

fields of studies are reduced to solve single valued nonlinear 

equations. On the other hand, the construction of iterative 

without memory methods for approximating the solution of 

nonlinear equations or systems is an interesting task in 

numerical analysis. During the last years, numerous papers, 

devoted to the mentioned iterative methods, have appeared in 

several journals.  

      The existence of an extensive literature on these iterative 

methods reveals that this topic is a dynamic branch of the 

numerical and nonlinear studies with interesting and 

promising applications (the study of dynamical models of 

chemical reactors, radioactive transfer, preliminary orbit 

determination, etc).  

      For these reasons, we have constructed a bi-parametric 

family of derivative-free without memory methods in which 

there are four function evaluations per full cycle. Taking into 

consideration of the efficiency index of multi-point iterations, 

we have attained that our proposed family possess 1.626 as its 

index of efficiency, which is bigger than that of the newly 

published work (1). This idea was developed by giving an 

optimal eighth-order class of three-step derivative-free 

techniques. 

      The convergence rate of the presented contributions were 

established theoretically and its performance was tested 

through numerical examples. Our contributions are very 

promising, when the calculation of derivatives of the function 

takes up a great deal of time or impossible.  
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