
 

 

  
Abstract— In this paper the stage-structured population model 
with nonlinear cannibalism terms is studied.  Our approach 
utilizes a certain type of fuzzy systems that are based on 
Takagi-Sugeno fuzzy models to approximate nonlinear 
systems. We construct a fuzzy feedback control that permits to 
stabilize the system around the nontrivial equilibrium. The 
effort is used as a control term, the age classes as a states and 
the quantity of captured fish per unit of effort as a measured 
output.  In order to stabilize the stock states around the 
references equilibrium, this means biologically the 
sustainability of the fish stock, the output feedback controller 
based on the T-S state observer is adopted, rather than the 
state feedback. We formulate an observer and a controller to 
stabilize globally exponentially the closed loop Takagi Sugeno 
(T-S) model. The continuous non-linear model is first 
represented by a T-S model. Next, we develop a technique for 
designing a dynamic output feedback control law which 
globally stabilizes this fuzzy system model. All the procedures 
are based on the linear matrix inequality approach. The 
effectiveness and feasibility of the proposed method are 
demonstrated with a practical example. It is shown by 
numerical simulations that the control law investigated permits 
the stability of the system around the positive equilibrium 
point. 
 

Keywords— Dynamic output feedback, harvested fish population 
system, nonlinear systems, Takagi-Sugeno multimodel.  

I. INTRODUCTION  

HE management of a fishery is a decision with multiple 
objectives. One of the desirable objectives in the management 
of fish resources is the conservation of the fish population. 
The formulation of good harvesting policies which take into 
account this objective is complex and difficult. For this reason, 
models of fish population dynamics are essential to provide 
assessment of fish biomass and fishing pressure. Their use 
forms the basis of scientific advice for fisheries management. 
Their nonlinearity and their complexity that are associated 
with biological phenomena (birth, death, growth, cannibalism, 
intra-stage competition for food and space, etc.) offer many  
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challenges for scientists and engineers, in order to manage fish 
population resources.  Fisheries management involves 
regulating when, where, how, and how much fishermen are 
allowed to harvest to ensure that there will be fish in the 
future. The development of fishing management modeling was 
motivated by the need to understand mechanisms governing 
production flows of marine reserves. Several models were 
built and their analyses helped to identify management 
measures adapted to specific objectives. 
The control theory can be used to address the problem of 
defining a good harvesting policy, by stabilizing the stock 
states around the references equilibrium, which means 
biologically the sustainability of the fish stock. When solving 
this control engineering problem, it is often necessary to know 
the state of a dynamical system. But in fishery systems the 
states variables can’t be measured and the resources can’t be 
counted directly except with acoustic method which is not 
generalized yet. Therefore, the presence of unknown states 
becomes a difficulty which can be solved by means of the 
inclusion of an appropriate state observer. 
Recently, increasing attention has been carried out to 
investigate control and state estimation of nonlinear systems. 
A first approach can be done using the T-S fuzzy model 
[21,35], which consists in combining local linear models to 
describe the global behavior of the nonlinear system. The 
overall model of the nonlinear system is obtained by 
interpolating these linear models through nonlinear fuzzy 
membership functions. This can be attained, for example, by 
using the method of sector nonlinearities, which allows the 
construction of an exact fuzzy model from the original 
nonlinear system by means of linear subsystems [24]. From 
this exact model, fuzzy state observers and fuzzy controllers 
may be designed based on the linear subsystems.  
Sufficient conditions for the stability and stabilisability of T-S 
systems have been established using a quadratic Lyapunov 
function [8,23,25,36]. The stability depends on the existence 
of a common positive definite matrix guarantying the stability 
of all local subsystems. Also, a certain form of T-S observers 
has been proposed and sufficient conditions for the asymptotic 
convergence are obtained [7,9,22,37]. The stability and 
stabilisability of the system and the asymptotic convergence of 
the observer are expressed in linear matrix inequalities (LMIs) 
form [18]. Once a T-S observer is obtained, and under some 
conditions, it can be used together with a state feedback T-S 
controller as in case of linear systems, to obtain a stabilizing 
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output feedback controller [16].  
Tools of control theory have been extensively used in 
renewable resource management[1,2,3,4,5,10,15,17,19,20].  
To the best of our knowledge, the problem of controlling 
exploited fish population systems trough dynamic output 
feedback and using T-S fuzzy models has not been studied in 
the literature. 
The rest of this paper is organized as follows. In section 2, we 
present an overview of dynamic T-S systems and sufficient 
conditions for the global exponential stability derived in LMIs 
form for T-S observer (which are dual with those of the state 
feedback TS controller). Section 3 deals with the description 
of the continuous stage structured model, which is transformed 
to a T-S fuzzy model. In section 4, the procedure to design the 
stabilizing output feedback controller when the decision 
variables depend on the state variables estimated by the T-S 
observer is applied, and simulation example is provided to 
demonstrate the design effectiveness. 

II.  TAKAGI -SUGENO OBSERVER AND CONTROLLER DESIGN  

A. Model Representation 
The design procedure describing in this section begins with 

representing a given nonlinear plant by the so-called T-S fuzzy 
model. The fuzzy model proposed by Takagi and Sugeno [21] 
is described by fuzzy IF-THEN rules which represent local 
linear input-output relations of a nonlinear system. The main 
feature of a T-S fuzzy model is to express the local dynamics 
of each fuzzy implication (rule) by a linear system model. The 
overall fuzzy model of the system is achieved by fuzzy 
‘‘blending’’ of the linear system models.  

A dynamic T-S fuzzy model is described by a set of fuzzy 
“IF … THEN” rules with fuzzy sets in the antecedents and 
dynamic linear time-invariant systems in the consequents. A 
generic T-S plant rule can be written as follows [24]: 

Model Rule i: 
IF  
 

z1(t) is Mi1 and … and zp(t) is Mip, 
 

THEN  
 

                          ����� = ������ + 	��	���    
         
���� = ������ 
 
Here, Mij is the fuzzy set and r is the number of model rules; 

x(t)∈ Rn is the state vector, u(t) ∈ Rm is the input vector, y(t) ∈ 
Rq is the output vector, Ai ∈ Rnxn , B ∈ Rnxm, and C ∈ Rqxn ; 
z1(t),… zp(t) are known premise variables that may be 
functions of the state variables, external disturbances, and / or 
time.  

Each linear consequent equation represented by 
 

 ������ + 	��	���  
 
is called a ‘‘subsystem.’’ 

We will use z(t) to denote the vector containing all the 
individual elements z1(t),… zp(t). 

Given a pair of (x(t), u(t)), and using singleton fuzzifier, 
max-product inference and center average defuzzifier, we can 
write the aggregated fuzzy model as:   

 ����� =
∑ �������������� + 	��	�����
��� ∑ ��������

���

														(�) 

 
Where  
 
z(t) = [z1(t) z2(t)… zp(t)], 
 
and 

������� = 	����(�����)�

���

 

 
The term Mij(zj(t)) is the grade of membership of zj(t) in Mij. 
(1) Can be written as follows:   
 ����� = ∑ ��(����)	������� + 	��	�����

��� 				     (2) 
 
where : 
 �������� = 	 ��(�	
�)

∑ ��(�	
�)	
�
���

																										(3) 

 
Since  
 

 ∑ �(����)	�
��� > 0    

and  
 ������� ≥ 0,										� = 1, 2, … , �, 
 
we have :    
 
   ∑ ��(����)	�

��� = 1 
 
and     
 
  �������� ≥ 0,											� = 1, 2, … , �, 
 
for all t. 
The global output of T-S model is interpolated as follows: 
 
��� = 	∑ �����������(�)�

���                           (4) 
 
It should be point out that at a specific time, only a number 

s of local models are activated, depending on the structure of 
the activation functions �i (.). 

 
B. T-S controller design  
We have proposed an LMI-based design method using 

fuzzy state feedback control in [1]. However, in real-world 
control problems, the states may not be completely accessible. 
In such cases, one needs to resort to dynamic output feedback 
design methods. Fuzzy dynamic output feedback control is the 
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most desirable since it can be implemented easily with low 
cost. 

In the literature, the main control law used is the PDC 
(parallel distributed compensation). The PDC [25] offers a 
procedure to design a fuzzy controller from a given T-S fuzzy 
model.  

In the PDC synthesis, each control rule is designed from the 
corresponding rule of a T-S fuzzy model. The designed fuzzy 
controller shares the same fuzzy sets with the fuzzy model in 
the premise parts. For the fuzzy models (1) we construct the 
following fuzzy controller via the PDC: 

Control Rule i: 
IF 

 
 z1(t) is Mi1 and … and zp(t) is Mip, 
 

THEN  
 

  u(t) = -Ki x(t), i=1,2,…,r.                                         
 

The resulting global controller all decision variables are 
measurable is composed of several linear state feedbacks 
blended together using the nonlinear functions ��(.) of the 
model: 

 
            	��� = −∑ ��(����)�������

���                    (5) 
 
The closed loop system is given by:  

   ����� = 	∑ ∑ ������������������� − 	������(�)�
���

�
���           (6) 

 
The following theorem [9] gives conditions to exponential 

stability for the closed loop systems.  
Denote   
 

          ��� = 	 �� − 	����                                    (7) 
 
 and    
 

         �(��� ,�) = 	 (�������

�
)�	P + 	P	(�������

�
)         (8) 

 
Theorem 1: Suppose that there exists symmetric positive 

definite matrices P1and Q1 such that 
 �(���,��) +  � −

�

�
!"� < 0                                             (9a) 

 �(���,��)−"�/2 ≤ 0                                   (9b) 
 
∀	� < #	 ∈ {1, …$}   and    ���������������� ≠ 0 . Then the 
closed loop continuous T-S model described by (6) is globally 
exponentially stable.                

 
The fuzzy controller design is to find the local feedback 

gains Ki such that the closed loop system (6) is stable. The 
conditions (9) are not convex in P1 and Ki. Pre-multiplying 
and post-multiplying both sides of inequalities in (9) by P1 , 

we obtain the following LMIs: 
 ����� + ���� − ��%� − %����� +  � − 	 �

�
!&� < 0     (10a) 

 
(�� + ��) − ���� − ��� − ���� − ��� + ��

���� +����+��
���� + ���� ≥ 0                       (10b) 

 
which are LMIs in X1 , Yi ,  and S with  
 �� = ���� ;   %� = ����    
and   & = ��"��  . 
 
C. T-S observer design  
The T-S controller proposed in previous section is based on 

a state feedback. However, in real-world control problems, the 
states may not be completely accessible. Thus, the problem 
addressed in this section is the construction of a T-S observer 
to estimate the states of the T-S model (1). 

In the following part, we assume that the decision variables 
depend on states variables estimated by a T-S observer. 
Therefore, the activation functions of the controller are 
different from the activation functions of the T-S model (1) as 
they depend on estimated state variables. In the sequel the 
estimated decision variable vector is denoted by �̂(�). 

Using the same structure as the one for T-S controller 
design, the T-S observer for the T-S model (1) is written as 
follows: 

x(� = ∑ ����̂����(���(��� + ��	���+ ���
��� − 
(����)�
���     

(11a) 
 

    
(��� = 	∑ ����̂�������((�)�
���         (11b) 

With  
       	��� = −∑ ��(�̂���)���(����

���                     (12) 
 
Where �̂(�) is the vector of estimated decision variables 

depending on the estimated state variables �((�)  and possibly 
on the input  	��� . The augmented system is: 

 �̅� = ∑ ∑ ∑ ������������̂��������̂�����
���

�
���

�
��� �̅����̅(�)  

(13) 
Where: 
 �̅��� = *��� ����&��� Θ�� + ΔB��K�

+          (14) 

 &��� = Δ��� − Δ����� + ��Δ��� 	           (15a) 
 

Δ��� = �� − ��                                 (15b) 
 

Δ��� = �� − ��                                   (15c) 
 

Δ��� = �� − ��                             (15d) 
 �̅��� = (�(����, �,(�)�)�                    (15e) 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1416



 

 

 �,��� = ����− �((�)                          (15f) 
 

Θ�� = A� − L�C�                               (15g) 
 

The asymptotic stability of the augmented system (13) can 
be derived easily as follows [9]. 

 
Theorem 2 : Suppose that there exists symmetric matrix P 

> 0  such that 
 �̅���

� � + ��̅��� < 0                              (16a) 
  �̅�����̅���

�
!� � + �  �̅�����̅���

�
! < 0         (16b) 

 
∀�, # < ℎ ∈ {1, …$} and  ������������̂��������̂���� ≠ 0 
Then the closed loop continuous T-S model described by 

(13) is globally asymptotically stable. 
 
As we can see, conditions (16) are non convex. In [9] a 

technique to solve those constraints is proposed, to design the 
T-S controller and the T-S observer separately. This technique 
leads to those inequalities: 

 ������ + ����� < 0                                                       (17) 
 

(��� + ���)��� + ������ + ���� < 0                           (18) 
 - ������ + ����� ������ + &���� ����&��� + �������� Θ���

. < 0               (19a) 

 - (��� + ���)��� + ��(��� + ���) (. )����&��� + &���� + (�� + ��)������ Θ��� + Θ���

. < 0                                                                                 

                                                                            (19b) 
 

Where (. )� = (���&��� + &���� + (�� + ��)������)� 
 
(17) and (18) are easy to transform into LMIs form with the 

same procedure as stated at the end of section 1.B. Once P1 
and Ki, ∀	� ∈ {1, … $} are obtained, we substitute them into 
(19). The obtained conditions are LMIs in P2 and Li, ∀	� ∈�1, … $�	 and can be solved easily by a convex optimization 
technique such as the interior point method. 

III.  FISH POPULATION SYSTEM MODEL AND TS MODELLING 

A. Problem Formulation and Assumptions  

The modeling of the exploitation of biological resources 
like fisheries and forestries has gained importance in recent 
years. In order to understand the biology and development of 
the particular species, to optimize the catching of fish, to 
stabilize and to aid the preservation of the fish population in 
marine ecosystems, various dynamic models for commercial 
fishing were proposed and analyzed by considering the 
economic and biological factors: global models that give a 

general vision of the stock, which is represented with a single 
variable [26, 27] and structured models that distinguish 
between several stages (classes of ages, of size...) of the stock, 
the evolution of each one is described separately 
[4,11,28,20,21]. Age -or stage-structure was included in the 
modeling of harvested populations, particularly fish and 
forests [28]. Early models were linear and deterministic [29], 
progressing later to models that included density dependence 
[30] and seasonal effects [31]. In [32] the continuous age 
population model was studied, especially the model structured 
into three stages: larvae, juveniles and adults whose respective 
stocks (x1 , x2 , x3 ) ∈ ���  follow the dynamics:  

 

/									��� = −0��� − 1��� + ���, ������ = 0��� − 0��� − 1���			��� = 0��� − 1��� − 2(�)��			
 = ��																																																			
3 

 
The positive coefficients α1 and mi represent the growth and 

mortality rates, respectively. We assume that the births in class 
x1 are generated only by the adults class x3 with a reproduction 

law of Beverton-Holt type: ��, ��� =
�(
)��

����
 .  

The term c(t) in the third equation represents a harvesting 
effort on the adult population. A typical instance of such 
system is used for the modeling of population of fishes 
harvested by fishermen [27] but the same model is also met 
within the metabolic field [32]. The n stages structured model 
with the same structure was studied by [33, 34]. In [19] the 
authors built the continuous age structured model in fishery 
with n+1 classes, which is the adopted model for our study:we 
consider a population of exploited fish which is structured in n 
age classes (n ≥ 2), where every stage i is described by the 
evolution of its biomass Xi for 0 ≤ i ≤ n. Each stage in the 
stock (i = 1... n) is characterized by its fecundity, mortality and 
predation rates. The first class X0 is constituted of the pre-
recruits i.e the eggs, larvae and the juveniles. The other classes 
are the post-recruits or the exploited phase of the population.In 
addition; a fishing effort is included in the global mortality 
term. The dynamic of the fish population can be represented 
by the following system of ordinary differentials equations 
[1,2,3,4,11,19,20]: 
 

45
65
7�� 			= −0 � + ∑ 8����

��� − 	∑ 9���� 												�
�� 	��� 			= 	0� − 	 �0� + 	:�;���																										

:
:��� 		= 	0���� − 	 �0� + 	 :�;��� 																										

3(20) 

 
Where: 
 0� = 	0 + ��	 
Mi : is the natural mortality of the individuals of the i th age 

class; 0	: is the linear aging coefficient; 9 	: is the juvenile competition parameter; 
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9� 	: is the predation parameter of class i on class 0 ; <�: is the fecundity rate of class i ; =�	: is the reproduction efficiency of class i ; :� 	: is the catchability of the individuals of the i th age class; �� 	: is the biomass of class i; ;	 : is the fishing effort at time t and is regarded as an input; % : is the total catch per unit of effort and is regarded as 
output; 
Let us note that all the parameters of the model are positive. 
The recruitment from one class to another can be represented 
by a strictly positive coefficient of passage. The passage rate α 
from the juvenile class to the adult stages is supposed to be 
constant with respect to time and stages. This means that the 
time of residence is equal to 1/α. The laying eggs are 
considered continuous with respect to time. The total number 
of eggs introduced in the juvenile stage is given by ∑ <�=����

��� . 
The cannibalism term ∑ 9���� �

��  is based on the Lotka-
Volterra predating term between class i and class 0. The intra-
stage competition for food and space is expressed as 9 � �. 
The mortality of each stage i is caused by the fishing and 
natural mortality which is supposed linear [19]. 
 
The harvest function is defined as:  

 
ℎ��� = ∑ :�;�����(�)�

���                              (21) 
 
Here qi > 0 is the catchability coefficient, defined as the 

fraction of the population fished by a unit of the fishing effort 
E(t), which is the intensity of the human activities to extract 
the fish. In general, fishing effort is regulated by quotas, trip 
limits and gear restrictions.  

Equation (21) implies that the harvest function Y(t) called 
also the total catch per unit of effort and is regarded as output 
of the system (20) and is defined as:  

 %��� = ∑ :���(�)�
���                                  (22) 

 
If the price of fish responds to the quantity of the harvest, a 

greater harvest would induce a lower price of harvest, and vice 
versa. If we assume that the market price of the harvest 
motivates changes in fishing effort, a lower price (or a larger 
population) induces less fishing effort, and vice versa.  
 
Thus, our studied system is: 
 

45
6
57�� = −0 � + ∑ <�=����

��� − 	∑ 9���� �
�� 	��� = 	0� − 	 �0� + 	:�;���																										

:

:��� = 	0���� − 	 �0� + 	:�;���																				%		 = 	 :���	 + 	:���	 + 	… + 	:���																		
3               (23)                                      

 
 
One supposes that the system (23) satisfies the following 
assumptions: 

Assumption 1 : 

One non linearity at least must be considered. ∑ 9� ≠ 0�
��   

Assumption 2 : 
The spawning coefficient must be big enough so as to avoid 

extinction. ∑ <�=�>��
��� 	> 	0   

where : >� = 	 !�

∏ (!��	#�$%)
�
���

 and ;? is a constant fishing effort. 

Under the assumptions 1 and 2 the system (23) has two 
equilibrium points [19] : 

The first one is the origin X = 0 which corresponds to an 
extinct population and is therefore not very interesting. The 
second one is the nontrivial equilibrium �∗ defined as : ��∗ = 	 >�� ∗ ,  and   � ∗ =

∑ &�'�(�
�
��� �		!	

∑ ��(�
�
��� 	�		�	

 

Assumption 3 : 
All age classes are subject to catch and the oldest one yield 
eggs.∀� = 1 …$	:� > 0  and <�=� ≠ 0 

B. State Transformation  

Let ;? a constant fishing effort. Using the change of coordinate �� = �� − ��∗ and 	 = ; − ;?  the system (23) can be 
transformed into:      
 

          �� = ����� + ����	                                 (24) 
 
Where: �

=

@AA
ABC − 9 � 0

0

⋮
0

	C� − 9���
−�0� + :�;?�0

⋱
0

C� − 9���		
0

−�0� + :�;?�
⋱
0

				⋯				
⋱

⋱

C� − 9���
0

0

0
−�0� + :�;?�DE

EEF 
 C = −(0 + 29 � ∗ + ∑ 9���∗�

��� ) ,  
 C� = =�<� − 9���∗;  i=1...n 
 

� =

@AA
AAB

0
−:���∗ − :���
−:���∗ − :���
−:���∗ − :���

⋮

−:���∗ − :���DE
EEE
F
 

 

C. Construction of TS Fuzzy Model 

For simplicity, we consider that n=2, and �� ∈ G−H, HI,H ∈

ℝ∗�. The modeling approach used in this paragraph is the 
sector non-linearity procedure [24]. 
The system (24) has two non constant terms: x0, and x1 . For 
non constant terms, define: 
 
  J���� = ��  ,    i=0,1.  
 

Next, calculate the minimum and maximum values of zi(t) 
under �� ∈ G−H,HI. They are obtained as follow: 
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max zi(t) = a     ,   min zi(t) = -a 
 
From the maximum and minimum values, zi(t) can be 

represented by : 
 ����� = ��

�(�����).a+��
�(�����).(-a) 

 
where            
 

        ��
�������� + ��

�������� = 1 
 

Therefore the membership functions can be calculated as  
 

          ��
�������� =

��	
��)

��
     ;     ��

�������� =
��	��	
�

��
   

 
We name the membership functions "High", "Low", "Big" 

and "Small", respectively.  
Then, the nonlinear system (23) is represented by the 

following fuzzy model. 
 
Model Rule 1: 
IF z0 is "Low" and z1 is "Big" THEN 
 ����� = ������ + ��	��� 
 
Model Rule 2: 
IF z0 is "Low" and z1 is "Small" THEN 
 ����� = ������ + ��	��� 
 
Model Rule 3: 
IF z0 is "High" and z1 is "Big" THEN 
  ����� = ������ + ��	��� 
 
Model Rule 4: 
IF z0 is "High" and z1 is "Small" THEN 
 ����� = �*���� + �*	��� 
 
Here, z0(t) and z1(t) are premise variables and: 
 

 �� = KC + 9 H C� + 9�H0 −(0� + :�;?)L	 
 

 �� = K 0
−:���∗ − :�HL 

 �� = KC + 9 H C� + 9�H0 −(0� + :�;?)L  
 

 �� = K 0
−:���∗ + :�HL 

 

 �� = KC − 9 H C� − 9�H0 −(0� + :�;?)L 
 

 �� = K 0
−:���∗ − :�HL 

 

�* = KC − 9 H C� − 9�H0 −(0� + :�;?)L  
 

 �* = K 0
−:���∗ + :�HL 

 
The activation functions of this four-rule fuzzy model are: 
 �������� = � 

�(� (�)) × ��
�(��(�)) 

 �������� = � 
�(� (�)) × ��

�(��(�)) 
 �������� = � 

�(� (�)) × ��
�(��(�)) 

 �*������ = � 
�(� (�)) × ��

�(��(�)) 
 

IV. SIMULATION RESULTS AND DISCUSSION 

To demonstrate the effectiveness and the convergence of 
the state to the equilibrium, we consider a numerical example 
obtained from the stabilization of a fishery characterized by 
the parameter values given in Table 1 which are retained from 
the literature [4, 19,20]. The numerical values of parameters in 
the equation (1) are given in Table I.  

 

 
It is clear that the parameters satisfy assumptions (1), (2), 

and (3). 
Using an LMI solver (Yalmip interface [14] coupled to 

SeDuMi solver), and from conditions (11) and (12), we obtain 
the following feedback gains and the positive definite matrice:  

 

P1 = 1.0e − 005	 ∗ M0.3441 0.2176

0.2176 0.2576
N      

 
K1 =[  -52.1906  -57.5295]   ; 
 
K2 =[ -100.4749 -117.6886]; 
 
K3 =[  -93.8673 -110.6897]  ;        

TABLE I 
PARAMETER VALUES USED FOR SIMULATION  

Stage i 0 1 

pi 0.2 0.1 
f i  5 
li  1 
mi 0.5 0.2 
M i 0.5 0.2 
α   
αi 0.5 0.2 
��  1 
qi  0.1 
a  1 
xini 5.71 4.57 
X* 3.37 2.24 
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K4 =[  -95.0830 -113.0053]; 
 
Once P1 and Ki, ∀	� ∈ {1, …$} are obtained, we substitute 

them into (13), and the obtained conditions are LMIs in P2 and 
Li , and can be solved easily by using the same LMI solver: 

 

 �2 = M0.0010 0.0000

0.0000 0.2680
N 

 
L1 = 106 *[-0.3692; 6.7217]    ;         
 
L2 = 108*[0.0626; 2.0326]; 
 
L3 =108*[ 0.0738; 1.4975]      ;         
 
L4 =108*[-0.0124; 2.4304]; 
 
The obtained results are shown in figures 1,2,3,4,5 and 6, 

they present the controller, the states time evolution, 
estimation error and the output time evolution. 

 

 
 

Fig. 1 The control law 
 

 
 
Fig. 2 The time evolution of the state x1 and the estimated state x1 
 
 

 
 
Fig. 3 The time evolution of the state x2 and the estimated state x2 
 

 

 
 

Fig. 4 Estimation error of x1 
 
 

 
Fig. 5 Estimation error of x2 

 

 
 

Fig. 6 The output Y 

 

V. CONCLUSION  

In this paper, it is shown that one can regulates the fish stock 
in order to ensure the continuity of the population. One proves 
that the nontrivial equilibrium state is asymptotically stable. A 
T-S observer was used to estimate the state variables, and an 
output feedback controller is proposed to stabilize the 
harvested fish population system. The present paper shows 
that the control and estimation problems in fisheries 
management can also be investigated from the point of view 
of engineers, by combining modern Control Theory, Computer 
Science and Mathematics. 
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