
 

 

  

Abstract—In this paper we develop mathematical models for 3-D 
and 1-D hyperbolic heat equations and construct their analytical 

solutions for the determination of the initial heat flux for rectangular 

and spherical samples. Some solutions of time inverse problems are 

obtained in closed analytical form. We use approximate analytical 

solutions on the basis of conservative averaging method and compare 

the difference between polynomial approximations of exact solutions. 

Some numerical results are given for a silver ball. The influence of 

relaxation time on solution, linearity of classical and hyperbolic heat 

equation, linear and non-linear boundary conditions are investigated.  

 

Keywords—Intensive quenching, Hyperbolic Heat equation, 
Direct problem, Inverse problem, Exact solution, Fredholm integral 

equation, Conservative averaging method.  

I. INTRODUCTION 

ONTRARY to the traditional method of steel quenching 

in oil or polymer solutions, the intensive quenching 

process uses environmentally friendly highly agitated water or 

low concentration of water/mineral salt solutions and very fast 

cooling rates are applied [1]-[7].  Experiments show that 

classical heat conduction equation doesn’t stand when we try 

to model process of rapid cooling [8]. We propose to use 

hyperbolic heat equation for more realistic description of the 

intensive quenching process (especially for process initial 

stage) [9], [10], [11].  

Complete bibliography on hyperbolic heat conduction 

equation can be found in [12].  

In our previous papers we have constructed analytical exact 
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and approximate [9], [10] solutions for intensive quenching 

processes.  Here we consider few other models and construct 

solutions for direct and inverse problems of hyperbolic heat 

conduction equation. Since there is water involved in the 

process, we have to solve nonlinear boundary condition case. 

Here are given both approximate (on the basis of the 

conservative averaging method, see [13], [14]), and exact (on 

the basis of Green function method, see [15]-[18]) solutions.  

II. MATHEMATICAL FORMULATION OF 3-D PROBLEM AND 

SOLUTIONS FOR PARALLELEPIPED  

In this section we give the mathematical statement for direct 

and time inverse problems. 

A. Mathematical Statement of Full 3-D Problem for 

Parallelepiped  

The non-dimensional temperature field fulfils hyperbolic 

heat equation (telegraph equation): 
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Here c  is the specific heat capacity, k - the heat conduction 

coefficient, ρ - the density, rτ - the relaxation time. It 
represents the time lag needed to establish resulting heat flux 

when temperature gradient is suddenly imposed [9], [10], [11]. 

It is a natural assumption that planes 0, 0, 0x y z= = =  

are symmetry surfaces of the sample:  
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On all other sides of the steel part we have heat exchange 

with environment. Although the method proposed here is 

applicable for non-homogeneous environment temperature, for 

simplicity we consider models of constant environment 

temperature 

0 0Θ = .  

This restriction gives following homogeneous third type 

boundary conditions on the all three outer sides: 
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h  denotes heat exchange coefficient.  

The initial conditions are assumed in form: 
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From the practical point of view the condition (8) is 

unrealistic. The initial heat flux must be determined 

theoretically. As additional condition we assume that the 

temperature distribution and the distribution of heat fluxes at 

the end of process are given (known): 
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As the first step we use well known substitution: 

( , , , ) exp ( , , , ).
2 r
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              (11) 

Then the differential equation (1) transforms into 

differential equation without the first time derivative: 
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The initial and boundary conditions take form: 
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Additional conditions (9), (10) transform as follow: 

exp ( , , ),
2

Tt T
r

T
U V x y z

τ=

 
=  

 
         (21) 

( , , )
exp ( , , ) .

2 2

T

T

t T r r

V x y zU T
W x y z

t τ τ=

∂
= +

∂

   
   
   

  (22) 

B. Exact Solution of Direct 1-D Problem 

We will start with a formulation of the mathematical model 

for a steel part which is thin in ,y z directions – one-

dimensional model: 

 , .w l b l≪ ≪   

Then in accordance with conservative averaging method 

[13], [14] we introduce following integral averaged value: 

( ) 1
0 0

( , ) ( , , , ) .

b w

u x t bw dy U x y z t dz
−

= ∫ ∫       (23) 

Assuming the simplest approximation by constant in 

the ,y z directions, we obtain 1-D differential equation with 

the source term: 
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Initial conditions (13), (14) for the differential equation (12) 

are as follow: 
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( ) 10 0

0 0

( ) ( , , ) .

b w
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−

= ∫ ∫  

The boundary conditions remain in the same form: 
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Solution of this one-dimensional direct problem (24)-(28) is 

well known, see [15]-[18]: 
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The Green function has representation [15]: 
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Here the natural number m in the both sums is given by 

inequalities: 
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The eigenvalues iλ  are roots of the transcendental equation:  
tan( ) .lλ λ β=                 (31) 

 

C. Solution of Time inverse 1-D Problem  

As we mentioned earlier, from the experimental point of 

view initial condition (22) is unrealizable and the 0 ( )v x  must 

be calculated theoretically. The differentiation of solution (29) 

gives:  
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The additional conditions (21) and (22) at the end of the 

process regarding the function ( ),u x t  are as follow: 
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If both additional conditions are known we introduce new 

time argument by formula 

.t T t= −ɶ                             (37) 

The main differential equation (24) remains its form: 
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The boundary conditions (27), (28) remain the same. Both 

additional conditions transform to initial conditions for the 

equation (38): 
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The solution of direct problem (38), (27), (28) and (39) is 

similar with the solution (29): 
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For the heat flux we have an expression: 
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From formula (41) immediately follows a nice explicit 

representation for the initial heat flux: 
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In previous paper [11] we have used the Green function for 

classical (parabolic) heat equation, but here we used Green 

function for the wave (hyperbolic) equation. 

III. MATHEMATICAL STATEMENT OF PROBLEM FOR SPHERE 

A. 3-D Problem for Sphere 

We examine a problem for spherical sample hence it is 

useful to apply the Spherical coordinate system. Hyperbolic 

heat equation is in form  
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and boundary conditions 

0

1

2

0

2

1 1

0 2 0

0 2 0

2 ( ) 2

3 ( ) 3

| 0,  

| ( , , ),

| | ,  

| | ,

sin | ( , , ),

sin | ( , , ).

r

r R

W

W

V
r

r

V
kr hV g t

r

V V

V V

V
h V g r t

V
hV g r t

ϕ ϕ π

ϕ ϕ π

θ ϕ

θ ϕ

θ ϕ

ϕ ϕ

θ ϕ
θ

θ ϕ
θ

→

=

=+ = −

=+ = −

=

=

∂
→

∂
∂ + = ∂ 
=

∂ ∂
=

∂ ∂

∂ − = ∂ 

∂ + = ∂ 

     (45) 

 

B. Time inverse 1-D Problem for Sphere 

We can apply conservative averaging method to reduce 

problems dimensions. If we assume that 1-D problem can 

describe the process – i. e. process does not depend on values 

of θ  and ϕ  - our problem is in form 
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As mentioned previously, initial heat flux cannot be 

determined experimentally so we use temperature distribution 

at the end of process:  

( , ) ( ), [0, ]TV x T V x x R= ∈           (47) 

IV. APPLICATION OF CONSERVATIVE AVERAGING METHOD 

FOR TIME INVERSE HYPERBOLIC HEAT CONDUCTION PROBLEM 

In this part we consider 1-D spherical hyperbolic heat 

equation: 
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Transformation  

U rV=                    (49) 

allows us to go to Cartesian coordinates. We compare the 

solution of this equation with classical parabolic heat equation. 

A. Original Problem 

We start with the formulation of the one-dimensional 

mathematical model for intensive steel quenching without heat 

losses: 
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The initial heat flux 
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can’t be measured experimentally and must be calculated. 

As an additional condition we assume experimentally 

realizable condition – the temperature distribution at the end of 

process is given: 

( , ) ( ), [0, ]TU x T U x x H= ∈ .         (55) 
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B. The Approximate Solution by Conservative Averaging 

Method   

By applying conservative averaging method to the problem 

(11)-(20) we obtain the integral average  temperature 

0 ( )u t and following boundary problem for ordinary 

differential equation: 
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The second sub-problem has non-homogeneous main 

equation and homogeneous initial conditions: 
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Here ( )q t  is solution of the differential equation (63) with 

special initial conditions: 
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Consequently, we have finally obtained the solution of the 

problem (56), (57) as: 

2 20

0 0

0 0 0
0 0

2 2

0

( )

1 1
( )sinh( )]
2 2 2

2 ( )
sinh( )( · ( )) .

2 ·

[r r

r r

t t

r r r

t t

r

r

u t e u e

v t
u u

t h
e e d

c

β
τ τ

ω
τ τ

β
τ β τ β τ

τ ω
β ω ω

β τ ρ

−

−

= +

+ − − +

−
+ Θ∫

  (64) 

As the last step we use the additional information –  

condition (9), i.e. the known value at the end of the process. 

This information allows us to express unknown second initial 

condition in closed and simple form:  
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We can increase the order of the approximation for the 

solution of the original problem (11)-(20) by the 

representation with polynomial of second degree and 

exponential approximation. Linear approximation reduces to 

approximation with constant. Approximation with second 

degree polynomial [13], [14]: 
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We use boundary conditions to determine 1( )u t  and 

2 ( )u t . The integration over interval [0, ]x H∈  of the main 

equation practically gives the same ordinary differential 

equation (56). The only difference is in the same coefficient at 

two terms:  
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The additional conditions remain the same. It means that we 

can use formulae obtained above, replacing the 
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parameters ,β γ  by following expressions:  
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Exponential approximation: 
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Alike previous case, difference is only in parameters β and 
:γ   
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We have obtained solution of well posed problem in closed 

form. This solution can be used as initial approximation for 

integrated over [0, ]x H∈  equation. 

Conservative averaging method can be applied to problems 

with non linear BC. Condition for nucleate boiling 

(
1

[3;3 ]
3

m∈ ): 

 [ ( )] 0, , [0, ]m m

B

U
k U t x R t T

x
β

∂
+ − Θ = = ∈

∂
. 

One dimensional nonlinear BC case is solved numerically. 

V. RESULTS 

We solved several problems and obtained numerical results 

using Maple and COMSOL Multiphysics. Modelling is done 

for a silver ball, r=0.02m, temperature at the beginning of the 

process (t=0) is 600°C, and at the end ( t=T) 0°C. 

 

 

Fig. 1 Dependence on 
rτ  value 

 

Smaller relaxation time values correspond to faster cooling 

and greater heat fluxes. 

 

If we compare results obtained by approximation with 

constant, second degree polynomial and exponential 

approximation (Fig. 2.a, 2.b.), we see that they are close.  

 
Fig. 2.a Comparison of results. t=2 sec 

 

rτ  0
v  

0.2 -4499.270429 

0.5 -1799.270299 

1.5 -600.2998684 
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Fig. 2.b Comparison of results. t=0.5 sec 

 

The smaller the rτ  value the closer the approximate 
solutions, so we can conclude that it is sufficient to use 

approximation with constant. 

 

When initial heat flux 
0v  is changed a little: ε± , the 

solution also changes (Fig. 3.1, 3.b). It is important to 

calculate 
0v  very precisely. Note that time interval [1; 5] is 

observed. 

 

 
Fig. 3.a Differences in solutions when initial heat flux is 

changed. ε =0.01 

 
Fig. 3.b Differences in solutions when initial heat flux is 

changed. ε =0.5 
 

If we compare solutions of classic (parabolic) and 

hyperbolic heat conduction problems, using nonlinear 

boundary condition case, we obtain graphic in Figure 4. 

 
Fig. 4. Nonlinear BC case 

 

We examined temperature on the radius. As you can see, the 

temperature on radius is not monotony. It means that the form 

of boundary condition on the surface can vary: 

 
Fig. 5. Temperature distribution on radius 

 

It is very clear that at the beginning of the process 

hyperbolic term is extremely important but later process is 

described by classic heat equation. Fig. 4 presents 

temperature’s wave-like nature in the intensive steel quenching 

process. 

 

It is possible to define precise points were temperature is 

computed: 
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Fig. 6. Temperature changes at the centre (r=0) and r=0.01m 

  

VI. CONCLUSIONS 

We have constructed some solutions for time inverse 

problems for hyperbolic heat equation with linear and 

nonlinear boundary conditions. The solutions for 

determination of initial heat flux are obtained in closed 

analytical form. Numerical results are obtained and examined 

for spherical sample. 
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