
 

 

  

Abstract— We study the shear flow of a non-Newtonian fluid 
between flat parallel plates in relative tangential motion with 
temperature dependent viscosity. The temperature and velocity 
distributions are investigated for a layer of fluid with Nahme type 
rheological equation, located between two plates and the upper plate 
moves with constant velocity. The existence and multiplicity results 
are examined for the solutions to the corresponding boundary value 
problems. An application of this result for experimentally determined 
material parameters is given. 
 
Keywords—Non-Newtonian fluid, Nahme-type model, Ostwald-

de Waele power law model, Polymer melts, Temperature dependent 
viscosity 

I. INTRODUCTION 

n many fields, such as food industry, drilling operations, the 
fluids either synthetic or natural, are mixtures of water, 
particle, oils, red cells and other long chain molecules. This 

combination imparts non-Newtonian characteristics to the 
resulting liquids. The viscosity function varies non-linearly 
with the shear rate. The practice of non-Newtonian fluids 
includes extrusion of polymer fluids, colloidal and suspension 
solutions, molten plastics and many others. Due to the 
diversity of fluids in nature many models have been proposed 
to describe their behavior. One particular non-Newtonian 
model which has been widely studied is the Ostwald-de Waele 
power-law model. 

Viscous heating can play an important role in the channel flow 
dynamics of fluids with a temperature-dependent viscosity 
such as polymers and silicate melts. Exact solutions are given 
for flows of power-law fluids, with heat generation and 
temperature dependent viscosity, in three situations, namely 
pressure flow through a circular tube, shear flow between 
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rotating concentric cylinders and shear flow between parallel 
plates by Martin [14].  

It is well-defined that nonisothermal flows of fluids with strong 
temperature dependence viscosity can lead undesirable 
instability in technological processes. These phenomena can 
be mathematically described by nonlinear governing equations 
([8], [10], [12], [15], [17]-[22]). 

The polymer melt that is investigated in this work is a 
commercial grade low density polyethylene BRALEN RB 03-
23 of Slovnaft Petrochemicals [25], s.r.o., further referred to as 
LDPE. BRALEN RB 03-23 which is designed for production 
of heavy duty and shrink films of thickness 0,07 - 0,25 mm. It 
is well suited for blow moulding of various containers, pipes, 
sheets and profiles extrusion and also for injection moulding. 
In this paper we focus our investigations to the physical 
quantities characterizes polyethylene flow in a capillary. First, 
the material characterization is given to obtain the necessary 
data. A quantitative description of the rheological behavior of 
polymer melts is crucial in understanding the relation between 
processing and product properties. As an intermediate step 
between the well-defined rheometrical flows and complicated 
industrial processing flows, simplified, experimentally 
accessible, inhomogeneous flows that exhibit a combination of 
transient shear and elongational deformation are investigated. 
The detailed analysis of these flows allows the assessment of 
constitutive models and numerical predictions for prototype 
industrial flows. One of the main problems in constitutive 
modeling is to obtain a correct description of the transient 
nonlinear behavior in elongation and shear flows 
simultaneously. Well-known and widely used models, such as 
the non-Newtonian power-law model yield satisfactory results. 

The non-Newtonian viscosity depends strongly both on 
velocity gradient and on temperature.  

We consider an incompressible homogeneous fluid with 
constant density and the fluid viscosity is temperature-
dependent. The power-law viscosity function will be applied. 

These phenomena can be mathematically described by 
nonlinear governing equations ([9], [13], [23], [25], [26]). 

For steady viscometric flows of temperature dependent 
Newtonian fluids exact solutions have been given by Nahme 
[16] and Kearsley [11]. These authors adopted an exponential 
form for viscosity-temperature dependence. Bird and Turian 
[6] have investigated heat generation in a Newtonian fluid in a 

Non-Isothermal Steady Flow of Power-Law 
Fluids between Parallel Plates 

Gabriella Bognár, János Kovács 

I

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 6, 2012 122



 

 

cone-plate viscometer and applied Nahme's result to validate 
the solution. 

Considering thermal boundary conditions, simultaneously 
developing steady laminar flow of viscous non-Newtonian 
fluid flowing between parallel plates was investigated 
numerically in [7]. 

To discuss these problems we investigate simultaneously the 
equations of motion and energy. These equations can be 
solved numerically by e.g., the Runge-Kutta method. In fact, 
the analytical solutions prove to have two-valued cases, which 
would probably not have been suspected by applying 
numerical techniques alone. 

The aim of this paper is to establish exact solutions for a 
class of steady shear flows of power-law fluid between two 
infinite flat parallel plates in relative tangential motion. We 
examine the existence, the multiplicity and the parameter 
dependence of the solutions to the corresponding nonlinear 
second order differential equation. Rheological parameters 
obtained by experiments are applied to our calculations. 
 

II. MATHEMATICAL MODEL 

We consider an incompressible homogeneous fluid with 
constant density and the fluid viscosity is temperature-
dependent. 

In this paper, we apply the Ostwald-de Waele power-law 
formula for non-Newtonian viscosity ([2], [3], [4], [5], [19], 
[20]) when the connection between the shear stress and strain 
rate is given by 

,
dy

dvx
xy µτ =         (1) 

where 

.
dy

dv
n

x
1

0

−

−= ηµ           (2) 

In (2) 0>n  is called the power-law index. The case  1<n   is 
referred to pseudoplastic or shear-thinning fluid, the case 

1>n  is known as dilatant or shear-thickening fluid. The 
Newtonian fluid is a special case, where the power-law index 

1=n . We assume that the power-law constant n  is not 

dependent on the temperature. In (2) constants 0η  and n  are 

characteristic of each polymer and each polymer solution.  

Although, the Arrhenius-type law of viscosity-temperature 
dependence relationship  

TR
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is more general and adequate to describe the polymer 
viscosities, for simplicity in this study we assume the Nahme-

type exponential approximation when the temperature 

dependence of  0η   is assumed by  
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where T  denotes the temperature, A  is the activation energy 
(a rheological factor), R  is the universal gas constant and η   

is the viscosity value at the reference temperature .T2  In this 

paper we assume that the thermal conductivity k  and density 
ρ  of the fluid do not change appreciably with temperature 
and pressure. 

Consider that a layer of non-Newtonian fluid is located 
between two parallel plates 0=y  and hy = . The upper 

plates moves in the direction of the positive x  axis with 
constant velocity V . The fluid adheres to the walls 0=y   

and hy =  having constant temperatures 1T  and 2T  

( 21 TT > ), respectively. The equation of motion and the 

equation of energy can be written [14] 
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or in dimensionless form 
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with dimensionless variables  
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The system (4), (53) should be completed by one of the two 
boundary conditions: 

Case i.  Plate temperatures prescribed  
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,)(,)(v: aθθη === 0000      (6)  
 

,)(,)(v: 01111 === θη       (7) 

where  
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Case ii.  The moving and stationary plates with the same 
temperature and 

 

,)(,)(v: 00000 =′== θη     (8) 
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Integrating (4) and denoting the constant of integration by  α   
one gets 
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Applying (10) the energy equation (5) can be rewritten 
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III. EXACT SOLUTIONS 

 

Theorem  Consider the boundary value problem (11), (8), (9). 

All solutions are concave on  [ ]10,  . There exists a value  

0>∗γ   such that 

 for each  ( ),,
∗∈ γγ 0   there are two solutions, 

 for  
∗= γγ   there is a unique solution, and 

 for  ( )∞∈ ∗
,γγ  there is no solution. 

 

Proof: Taking into consideration (11) we see that 
 

0
2

2

<
ξ

θ

d

d
   for  [ ]10,∈ξ  

and the concavity is obvious. 

Let us substitute  

( )θθ w=′  

to (11) one can obtain the first order differential equation 
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It is possible to separate the variables and one has 
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A second integration yields the solution of the form  
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Then one can get 
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Since  
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then we obtain from the second condition in (8) that  
 

.C 02 =  
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Applying  
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to  )(ηθ   we have  
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Equation (14) defines the values of γ  for each aθ  when the 

problem (11), (8), (9) has a solution. Fig.1 represents the 

dependence of γ  on .aθ  It shows that there exists a unique  

∗γ  for which (11), (8), (9) has exactly one solution and for 

smaller values of γ  there are precisely two solutions. The 

approximate maximum value of γ  is 880.=∗γ  at 

..a 181=θ   

The velocity distribution corresponding to temperature 
distribution (13) with  
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Fig.1. Dependence of γ  on aθ  

 

 

The constant of integration α  can be obtained from condition  

,)(v 11 =  
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Next we consider the boundary value problem (11), (6), (7). 
Similarly as in the previous case we have  
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From the boundary conditions (6), one gets a system of four 

transcendental equations for the constants of integration ,C1    

,C2  ,C3  and α    
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(15)   
 

It is remarkable that a simple geometry produces a very 
cumbersome result. If we restrict our attention to the case of 

equal plate temperatures, i.e., ,a 0=θ  then we have some 

simplifications in the formulas as  
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The calculations for θ  in the previous case on [ ]1,0  can 

similarly be performed here on [ ]1,2/1 . Applying the 

boundary condition  
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Moreover, α  can be determined from condition  
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IV. DETERMINATION OF RHEOLOGICAL PARAMETERS FOR 
LDPE 

In this section the experimental determination of the material 
parameters is discussed.  
 
The rheological properties of the polymer BRALEN RB 03-23 
[27] were measured by dynamic viscosity using a Physica 
UDS 200 type Universal Dynamic Spectrometer. The dynamic 
viscosity measurements were performed at different 
temperatures (170, 180, 190, 200 and 210°C) in the range of 
angular frequency 0.1-600 s-1. Complex viscosity (η*), was 
determined as characteristic quantities. Two intervals of 
angular frequencies are used as the Ostwald-de Waele power-
law model can be fitted well only in narrow intervals of the 
temperature. These phenomena will be exhibited in Table 2 
and Table 3. 
Table 1 exhibits the determination of power exponent n in the 
Ostwald-de Waele power-law model (2). It seems that n does 
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depend on the temperature but in our calculations we shall 
assume that the power-law constant n  is not dependent on the 
temperature. Therefore, the average value will be applied in 
the further calculations. 

 
 

ω=600…0.1 s
-1 ω=600…59.7 s

-1
 

Temperature 
[°C] n 

Temperature 
[°C] n 

150 0.36519 150 0.27759 

150 0.36716 150 0.27761 

160 0.38631 160 0.29587 

160 0.38449 160 0.29325 

170 0.40066 170 0.29552 

170 0.40306 170 0.30220 

180 0.41773 180 0.31369 

180 0.41786 180 0.31529 

190 0.43397 190 0.33341 

190 0.43354 190 0.33132 

200 0.44517 200 0.34128 

200 0.44786 200 0.33930 

210 0.45845 210 0.35441 

210 0.45842 210 0.35631 

Average 0.415705 Average 0.316218 

Table 1. 
 
 
On the base of average value of n with formulas (1) and (2) 

average 0η  can be evaluated. The dependence of 0η  on the 

temperature is represented in Fig.2. 

  
 
  ω=600…0,1 s

-1
 (n=0.4157) 

Temperature Average η0 Standard deviation η0 

[°C]     

170 962 11% 

170 980 11% 

180 744 11% 

180 768 11% 

190 617 12% 

190 637 12% 

200 546 13% 

200 527 14% 

210 487 15% 

210 479 15% 

Table 2. 
 

 
Fig.2. 
 

 
 

  ω=600…59.7 s
-1
 (n=0.3162) 

Temperature Average η0 Standard deviation η0 

[°C]     

170 846 9% 

170 868 8% 

180 688 8% 

180 711 7% 

190 599 6% 

190 616 6% 

200 546 6% 

200 530 6% 

210 506 5% 

210 498 4% 

Table 3. 
 
The activation energy is determined according to equality (3) 
(see Table 4.). The dependence of activation energy on the 
temperature is exhibited in Fig.3.  
 
 

  ω=600…0.1 s
-1
 ω=600…59.7 s

-1
 

Temperature 
Activation 
energy 

Activation 
energy 

[°C] [J/mol] [J/mol] 

180 40919 33125 

190 31935 24070 

200 27810 21741 

210 19492 12886 

Table 4. 
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Fig. 3. 

 
Now after calculations, we summarize the parameters 
necessary for the determination of γ  (12) in Table 6-7. 

 
 

ω=600…0.1 s
-1
 

h T2 η0 A  n k 

[mm] [°C]   [J/mol]   W/(m K) 

0.5 180 971.449 40919 0.4157 0.33 

0.5 190 756.157 31935 0.4157 0.33 

0.5 200 627.152 27810 0.4157 0.33 

0.5 210 536.616 19492 0.4157 0.33 

Table 6. 
 
 

ω=600…59.7 s
-1
 

h T2 η0 A  n k 

[mm] [°C]   
[J/mol

]   W/(m K) 

0.5 180 856.914 33125 0.3162 0.33 

0.5 190 699.604 24070 0.3162 0.33 

0.5 200 607.580 21741 0.3162 0.33 

0.5 210 537.854 12886 0.3162 0.33 

Table 7. 
 
In the literature for the heat conductivity Km/W33.0k =  

was found [24]. Using the rheological parameters we want to 
check the multiplicity of solutions to (11), (6) and (7) for the 
examined LDPE.  
 
 

Temperature ω=600…0.1 s
-1
 ω=600…59.7 s

-1
 

[°C] γ  γ  

180 0.43 0.50 

190 0.53 0.61 

200 0.61 0.73 

210 0.70 0.84 

Table 8. 

According to the numerical calculations from system (15) 

with 0a =θ  for 21 TT =  one can determine the values of γ  
for the corresponding temperature values. We note that 
system (15) is reduced to 
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We have seen from Table 8. that the values of γ  are smaller 

than 
∗γ . Then we can conclude that in all cases there are two 

solutions for the differential equation (11) with boundary 
conditions (6), (7). 
 
 
List of symbols: 

 
x  axis 
y  axis 

k  heat conductivity  [W/m K] 
h  distance of plates  [mm] 
n  power-law index   [ - ]  

A  activation energy  [J/mol] 
R  gas constant    8.314 [J/mol K] 
 ω  angular frequency  [s-1] 

1T  plate temperature   [°C] 

2T  plate temperature   [°C] 

T  mass temperature   [°C] 

ρ  density      [g/cm3] 
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