
 

 

  

Abstract— In this paper we investigate the dynamics of the 

Internet-Style Network with delay using a single link, and one or two 

user under delay. We establish the existence of the Hopf bifurcation 

and the normal form. The stochastic system is associated to the 

deterministic model and the mean values and the square mean values 

of the variables for the linearized stochastic system are analyzed. The 

last part of the paper includes numerical simulations and 

conclusions. 

 

Keywords — deterministic dynamic economic model, economic 

growth, education product, human capital, stochastic dynamic 

economic model.  

I. IN 

AME theory provides a natural framework for 

developing pricing and congestion control mechanisms 

for the Internet. Users on the network can be modeled as 

players in a congestion control game where they choose their 

strategies or in this the flow rates. Players are non-

cooperative in terms of their demands for network resource, 

and have no specific information on other user strategies. A 

user’s demand or utility for bandwidth is captured in a utility 

function and may not be bounded. To compensate for this, 

one can devise a pricing function, proportional to the 

bandwidth usage of a user, in order to preserve the network 

resources and to provide an incentive for the user to 

implement end-to-end congestion control [3]. A useful 

concept in such a non-cooperative congestion control game is 
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finding the Nash equilibrium, where each player minimizes 

his own cost (or maximize payoff) given all other player’s 

strategies. The non-cooperative congestion control game 

introduced in [2] is characterized by a cost function for each 

user that is defined as the difference of pricing and utility 

functions. The pricing function is proportional to the queuing 

delay experienced by the user, whereas the utility function 

that quantifies the user, demand for bandwidth belongs to a 

broad class of strictly increasing and strictly concave 

functions. In [7], [8], [9], the other Internet models are 

analyzed. 

In this paper we will analyze the differential system which 

shapes one internet network with a single link, with single 

user and two user under information delay.  

The rest of the paper is organized as follows. In section 2 the 

existence of a unique equilibrium of the system is established. 

We analyze the existence of the Hopf bifurcation considering 

r  as bifurcation parameter. In section 3 we analyze the 

direction and stability of the Hopf bifurcation. In section 4 we 

analyze the stochastic model with delay associated for 

internet style for a single link with a single user. In section 5 

we analyze the network model with a single link and two user 

and stability of the Hopf bifurcation. In section 6 for given 

values of the parameters the numerical simulations are given. 

In section 7 conclusions and future research are drawn. 

 

II. THE EQUILIBRIUM POINT AND THE HOPF BIFURCATION 

FOR A SINGLE LINK AND SINGLE USER UNDER INFORMATION 

DELAY 

The one internet network with single link, and single user under 

information delay is given by: 
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where )(tx is the user flow rate, 0>c  is the link capacity, 

)( rtd − is the queuing delay, 0≥r is the delay between the 

user and the link .0>α  The utility function )(xU  is 
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assumed to be strictly increasing, differentiable, strictly 

concave and 
dx

xdU
xU

)(
)( =′ . 

The first equation from (1) represents the dynamic system 

of a game where the cost (objective) function is given by: 

           )(),( xUdxdxJ −= α .                                      (2) 

For system (1) the following affirmations hold: 

Proposition 1: 

1. The equilibrium point is ),( 00 dx , where:    
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, 000 xUdcx ′==
α

                                                  (3) 

2. With respect to the translation 

0201 )()(,)()( dtxtdxtxtx +=+= ,  system (1) becomes:  
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where                             

           0011 ))(())(( dxtxUtxg α−+′=                              (5) 

3. The linearization of system (4) is: 
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where ).()0( 01 xUga ′′=′=  

4. The characteristic equation of (6):                        

02
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e

c
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Analyzing the roots of the characteristic equation with respect 

to r we obtain: 

Proposition 2:  

1. The roots of equation (7) are differentiable functions with 

respect to r. 

2. If 0=r , the roots of equation (7) have a negative real part. 

To establish the existence of the Hopf bifurcation we prove: 

Proposition 3: 

The characteristic equation (7) has the roots ,01 ωλ i=  

12 λλ = ,  

where:                     
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for 0r  given by:               
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Considering )(rλλ =  in (7) and deriving it with respect to r 

we get:         
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In (10) replacing r  with 0r  given by (9) and ω  with 0ω  

given by (8), we obtain: 
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From (11) we have .0)(Re 0 >′ rλ   

 

The above analysis can be summarized as follows: 

Proposition 4:  

Equation (7) has one Hopf bifurcation point at 0r , where 0r  is 

given by (9). 

III. DIRECTION AND STABILITY OF THE HOPF 

BIFURCATION FOR INTERNET NETWORK WITH A SINGLE 

LINK, WITH A SINGLE USER UNDER INFORMATION DELAY 

In this section, we study the direction, stability and the period 

of the bifurcating periodic solutions in system (4). The 

method we use is based on the normal form theory and the 

center manifold theorem introduced in [4], [8]. 

The notational convenience, let µ+= 0rr . Then 0=µ  

is the Hopf bifurcation value for system (4). System (4) can 

be rewritten as [10]:  
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where )( 0
'

1 xUa = , )( 0
''

2 xUa = , )( 0
'''

3 xUa = . 

For ),,( µφφ s=  ]0,[ rs −∈   with )],0,([
2

CrC −∈φ  we 

consider:  

)()0( 11 rBAL −+= φφφµ ,                                  (13) 

where 1A  and 1B  is given by: 
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System (12) can be rewritten as: 

ttt uRuAu )()( 11

.

µµ +=                                   (18) 

where 

].0,[),( rtuut −∈+= θθ  

For )],,0([ 21 CrC∈ψ  the adjunct operator )(*
1 µA  of 

)(1 µA  is defined as: 
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For )],0,([
21

RrC −∈φ , and )],,0([
21

RrC∈ψ  we 

define a bilinear form by: 
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where )()( 1 rB += θδθψ ,  ]0,[ r−∈θ , and δ  is Dirac 

distribution. 

In order to determine the Poincare normal form of the 

operator )(1 µA , we need to calculate the eigenvector q  of 

)(1 µA  associated to the eigenvalue 01 ωλ i=  and the 

eigenvector 
∗

q  of )(
*
1 µA  associated to the eigenvalue 

02 ωλ i−= . We can easily verify that: 

]0,[),exp()( 1 rvq −∈= θθλθ                (21) 

where 
T
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11 λcv =  ,  )exp( 022 rv λ=                         (22) 

is the eigenvector of  )0(1A  associated to the eigenvalue 1λ . 

The  eigenvector of )0(
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Using (20), we can verify that 0, >=<
∗
qq , 1, >=< ∗

qq .  

In the following, we will follow the ideas and use the 

notation in [4]. Let: 
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From (22), (23) and (28), we obtain: 
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Using the theory of the normal form [4] we have the 

following formulas:  
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Now we can state the main results of this section: 

Proposition 5: 

In the formulas (32), 2µ determines the direction of the 

Hopf bifurcation: if )0(02 <>µ , then the Hopf bifurcation 

is supercritical (subcritical) and the bifurcating periodic 

solutions exist for )( 00 rrr <> ; 2β  determines the stability 

of the bifurcating periodic solutions: the solutions are 

orbitally stable (unstable) if )0(02 ><β ; and T determines 

the period of the bifurcating periodic solutions: the period 

increases (decreases) if ).0(0 <>T  

IV. THE MATHEMATICAL STOCHASTIC MODEL  WITH 

DELAY, ASSOCIATED TO THE INTERNET STYLE NETWORKS 

WITH DELAY 

Let 0),,,( ≥Ω tPFt  be a given probability space  and 

Rtw ∈)(  be a scale Wiener process defined on Ω  having 

independent stationary Gauss increments with  

),min())()((,0)0( stswtwEw == . The symbol E  

denotes the mathematical expectation. The sample trajectories 

of )(tw  are continuous, nowhere differentiable and have 

infinite variation on any finite time interval [5].  

We are interested in knowing is the effect of the noise 

perturbation on system (1). The stochastic differential 

equation with delay is: 
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where 0,0 21 >> σσ , )(tw  is the scalar Wiener process 

and ),()(1 ωtxtx = ,  ),()(2 ωtdtx = are the components of 

the process 
Ttdtxtx )),(),,(((),( ωωω =  on the probability 

space.  

Linearizing (33) around the equilibrium 
T

dx ),( 00  yields 

the linear differential equation with delay: 
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where 
T

tytyty ))(),(()( 21=  and 11, BA  are given by (14) 

and ),( 211 σσdiagC = . 

 

Using the method from [6], [11], we analyze the first and 

the second moments of the solutions for (34) with respect to 

r .      

 

Proposition 6: 

1. For system (34), the moment of the solution is given by: 
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2. The characteristic function for (35) is: 
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3. If 0=r , the roots of equation 0)0,( =λh  have a negative 

real part. 

4. The equation 0),( =rh λ  has one Hopf bifurcation point 

at 0r , where 0r  is given by (9). 

5. If we denote by ))(()( 11 tyEtE = , ))(()( 22 tyEtE = then  
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To examine the stability of the second moment of )(ty  

for the linear stochastic differential equation with delay (34) 

we use Ito’s rule to give the stochastic differential of 
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where ),( 211 σσdiagC = . 

 

From (23) and 2,1,)),()((),( == jisytyEstR jiij  we get: 

 

Proposition 7: 

1. The differential system (39) is given by:  
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2. The characteristic function of (40) is given by: 
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Proof: 

System (40) derives from (39) with BA,  given by (13).  
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 where ijK  are 

constants. Replacing ),( stRij  in (40) and setting the 

condition that the system we obtain should accept nontrivial 

solution, we get 0),( =rl λ . 

 

From (41) we have: 
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and 

        12 ωλ i−=  and )(tz is the solution of equation  
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V. A ANALYSIS OF NETWORK MODEL WITH A 

SINGLE LINK AND TWO USER UNDER INFORMATION 

DELAY 

The internet network with single link and two users under 

information delay is given by: 
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where 
Ttxtxtx ))(),(()( 21=  are the users flow rate, 0>c  

is the link capacity, )( rtd − is the queuing delay, 0≥r   is 

the delay between the users and the the link, and 

2,1,01 => iα . The utility function )(xU  is assumed to be 

the strictly increasing, differentiable, strictly concave and 
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For system (51) the following affirmations hold: 
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1. The equilibrium point is 
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2. With respect to the translation 1011 )()( xtutx += ,  

2022 )()( xtutx += , 03 )()( dtutd += , system (51) becomes: 
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2. The linearization of system (52) is: 
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3. The characteristic function of (53) is given by: 
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Analyzing the roots of the equation 0),( =τλh  with respect 

to r  we obtain: 

 

Proposition 10: 

1. If  0=r  the equation  0),( =τλh , has roots with a 

negative real part. 

2. If  0≠r , exist 0r , given by: 
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where 0ω  is a positive real root of the equation: 
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so that for ),0[ 0τ∈r , equation 0),( =rh λ  has roots with a 

negative real part. 

       Considering )(rλλ =  in 0),( =rh λ , and deriving it 

with respect to r we get: 
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Let: 
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From (56) and (57) result: 

 

Proposition 11: 

If  0=r  the equation 0),( =τλh , has one Hopf 

bifurcation point at 0r , where 0r  is given by(55). 

 

We study the direction, stability and period of the 

bifurcating periodic solutions in system (52). The method we 

use is based on the normal form theory and the center 

manifold theorem introduced in [4], [8]. 

The notational convenience, let µ+= 0rr , with 0≥µ . 

Then 0=µ  is the Hopf bifurcation value for system (52). 

System (52) can rewritten as: 
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where  

 )(),( *
4

*
3 xUxU

IV=′′′= ρρ . 

For ),( µθφφ = , ]0,[ r−∈θ , with ).],0,([ 2CrC −∈φ  We 

consider 

 )()0( 22 rBAL −+= φφφµ                                  (60) 

where 2A  and 2B is given by: 
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For )],0,([ 21 CrC −∈φ , we define: 
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For )],0,([ 21 CrC −∈ψ  the adjunct operator )(*
2 µA  of 

)(2 µA  is defined as: 
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For φ  and ψ  we define a bilinear form by: 
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where 
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and )( r+φδ  is Dirac distribuition. 

In order to determine the Poincare normal form of the 

operator  )(2 µA , we need to calculate the eigenvector q  of 

)(2 µA  associated to the eigenvalue 01 ωλ i= and the 

eigenvector 
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02 iω−=λ . We can easily verify that  
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The eigenvector of )(
*

2 µA  associated to eigenvalue 2λ  

is given by: 
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Using (63), we can verify that 1,* >=< qq ,  

0,, ** >=>=<<
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qqqq ,  1,* >=<
−

qq . 

Next, we will follow the ideas and use the notations in [4]. 
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The vectors 
TT EEEEEEEE ),,(,),,( 23222121312111 ==  

are given by: 
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From (68), (69), (70) result: 
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The parameters TC ,),0( 21 µ  given by (32) with 

11210220 ,,, gggg  and (71). 

The stochastic perturbation of for the system (51) is given 

by: 
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where .3,2,1,0 => iiσ  

For the stochastic differential system with delay a similar 

study can be done. 

 

VI.   NUMERICAL SIMULATION 

In what follows, we consider )1ln()( += xuxU . Using 

Maple 14, for: 100=u , 2=c , 300=α , the equilibrium 

point is  20 =x , 11,00 =d . For this values we have 
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2247,60 =ω , 0851.00 =r , 159.02 −=β , 003.02 =µ , 

029.0=T . The limit cycle is supercritical, the solutions are 

orbitally stable, the period increases. 

The orbit ))(,( txt  is given in Fig. 1, orbit ))(,( tdt is 

given in Fig. 2, orbit ))(),(( 0 txrtx − in Fig. 3 and the orbit 

))(),(( 0 tdrtd −  in Fig 4.  

 

 
Fig.1 The orbit ))(,( txt  

 
Fig.2 The orbit ))(,( tdt  

 

 
Fig.3 The orbit ))(),(( 0 txrtx −  

 

 
                               Fig.4 The orbit ))(),(( 0 tdrtd −           

For 1.01 −=σ , 2.12 −=σ , 100=u , 2=c , 300=α , 

using the Euler stochastic method, the figures Fig.5, Fig.6, 

Fig.7, present the orbits  )),(,( 1 ωtxt , )),(,( 2 ωtxt , 

)),(),,(( 21 ωω txtx  of the system (33).  

 
Fig.5 The orbit )),(,( 1 ωtxt  

 
                                               Fig.6 The orbit )),(,( 2 ωtxt  

 

                      
                                      Fig.7 The orbit )),(),,(( 21 ωω txtx  

 

For 3.01 =σ , 3.02 =σ  we obtain  127,201 =ω , 

01182.01 =r , and the figures Fig. 8, fig.9, fig.10 show the 

orbits  ))(,( 11 tMt , ))(,( 22 tMt , ))(,( 12 tMt .  

 
Fig.8 The orbit ))(,( 11 tMt  
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                                 Fig.9 The orbit ))(,( 22 tMt  

 
Fig.10 The orbit ))(,( 12 tMt  

In what follows, we consider )1ln()( += xuxU , 21 =α , 

52 =α , 50=c , 5=u  the equilibrium point is  2510 =x , 

2520 =x 1923,00 =d . For this values we have 

8942,00 =ω , 7402,10 =r , 4150,02 =β , 0000821.02 −=µ , 

0000017.0−=T . The limit cycle is subcritical, the solutions 

are orbitally unstable, the period decreases. 

The orbit )),(,( 1 ωtxt  is given in Fig. 11, orbit 

)),(,( 2 ωtxt is given in Fig. 12, and the orbit )),(,( 3 ωtxt  in 

Fig 13. 

 

Fig.11 The orbit )),(,( 1 ωtxt  

 
                                Fig.12 The orbit )),(,( 2 ωtxt  

                  
                                   Fig.13 The orbit )),(,( 3 ωtxt  

Numerical methos for ordinary differential equations are also 

given in [12]. 

 

VII. CONCLUSIONS 

In this paper, we have examined the deterministic model for a 

network with a single link and with two users with delay. The 

time delay is determined for which a Hopf bifurcation takes 

place. The direction and the stability of the Hopf bifurcation 

are analyzed. The stochastic model is associated to the 

deterministic model. For this model the mean values and the 

square mean values of the linearized stochastic are analyzed. 

It is proved that there is a value of the delay for which a Hopf 

bifurcation takes place. The theoretical results are also 

justified by the numerical simulations. An analysis of the 

network model with a single link and multiple users will be 

done in a future paper.    

ACKNOWLEDGMENT 

The research was done under the Grant with the title ”The 

qualitative analysis and numerical simulation for some 

economic models which contain evasion and corruption”, 

CNCSIS-UEFISCU Romania (grant No. 1085/2008). 

 

REFERENCES 

[1] E. Altman, T. Başar, T. Jimenez, N. Shimkin, Competitive routing in 

networks with polynomial costs, IEEE Transactions on Automatic Control, 

vol. 47(1), pp. 92-96, 2002; 

[2] T. Alpcan, T. Başar, A utility-based congestion control scheme for 

internet-style networks with delay, IEEE vol 2, 2003; 

[3] S. Floyd, K. Fall, Promoting the use of end-to-end congestion control in 

the internet, IEEE/ACM Transactions on Networking, vol. 7, no. 4, pp. 458-

472, 1999; 

 [4] B. D. Hassard, N. D. Kazarinoff,  Y. H. Wan,  Theory and applications 

of Hopf bifurcation, Cambridge University Press, Cambridge, 1981; 

 [5]  P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential 
Equations, Springer–Verlag, Berlin, 1995; 

[6] J. Lei, M. C. Mackey, Stochastic Differential Delay Equation, Moment 

Stability and Application to Hematopoietic Stem Cell Regulation System, 

SIAM J. Appl. Math., 67(2), pp. 387–407, 2007; 

[7] G. Mircea -  Internet congestion control model, Proceedings of the 9th 

WSEAS International Conference on Mathematics and Computers in 

Business and Economics, Bucharest, Romania, pp.158-162, 2008;  

 [8] G. Mircea, M. NeamŃu, D. Opriş, - Uncertain, stochastic and fractional 

dynamical systems with delay. Applications. Lambert Academic Publishing, 

2011; 

[9] G. Mircea, D. Opris, - Neimark-Sacker and flip bifurcations in a 

discrete-time dynamic system for Internet congestion, Proceedings of the 10th 

WSEAS International Conference on Mathematics and Computers in 

Business and Economics, Prague, Czech Republic, pp.186-191, 2009;  

 [10] G. Mircea, M. NeamŃu, M.Pirtea, D. Opriş, - Deterministic and 

stochastic Internet-Style Networks with delay, Proceedings of the 11th 

WSEAS International Conference on Applied Informatics and 

Communications, Florence, Italy,  pp.239-244, 2011; 

[11] N. Sirghi, M. Neamtu, D.Opris - Deterministic and stochastic dynamic 

firm model with wealth and human capital accumulation. Numerical 

simulations  Proceedings of the 11th WSEAS International Conference on 

Applied Informatics and Communications, Florence, Italy,  pp.239-244, 

2011; 

[12] S. Solodushkin - -Access to the Solver of Functional Differential 

Equations through the Web Interface, Proceedings of the 11th WSEAS 

International Conference on Applied Informatics and Communications, 

Florence, Italy,  pp135-138, 2011. 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 6, 2012 148




