
 

 

  
Abstract—The paper brings a combination of a biased-relay 

feedback experiment and an algebraic control design method for 
time-delay systems. The combination results in a new principle of 
autotuning for a wide class of single input-output dynamic systems. 
The estimation of the controlled process is based on asymmetrical 
limit cycle data. Then, a stable transfer function with a dead-time 
term is identified. The controller is computed through solutions of 
Diophantine equations in the ring of stable and proper retarded 
quasipolynomial meromorphic functions (RMS). Controller 
parameters are tuned through a pole-placement problem as a desired 
multiple root of the characteristic closed loop equation. The 
controller design in this ring yields a Smith-like feedback controller 
with the realistic PID structure. The methodology offers a scalar 
tuning parameter m0 > 0 which can be adjusted by a suitable 
principle or further optimization. The first and second order time-
delay transfer functions can sufficiently estimate systems of quite 
high orders. The developed principles are illustrated by examples in 
the Matlab + Simulink environment. 
 
Keywords—Algebraic control design, autotuning, pole-

placement problem, relay experiment.  

I. INTRODUCTION 
HE development of various autotuning principles was 
started by a simple symmetrical relay feedback 

experiment proposed by Åström and Hägglund [1] in the year 
1984.  The ultimate gain and ultimate frequency are then used 
for adjusting of parameters by original Ziegler-Nichols rules. 
During the period of more than two decades, many studies 
have been reported to extend and improve autotuners 
principles; see e.g. [2], [3], [4], [8], [9]. The extension in relay 
utilization was performed in [2], [5], [7], [14] by an 
asymmetry and hysteresis of a relay. Over time, the direct 
estimation of transfer function parameters instead of critical 
values began to appear. Experiments with asymmetrical and 
dead-zone relay feedback are reported in [10]. Also, various 
control design principles and rules can be investigated in 
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mentioned references. Nowadays, almost all commercial 
industrial PID controllers provide the feature of autotuning. 

Time delay systems constitute an indispensable family of 
industrial processes. A feedback loop is the most efficient 
manner how to change system properties. However, thanks to 
the feedback loop, time delay notably affects whole system 
dynamics. During recent decades various approaches and 
algorithms have been researched for compensating the 
influence of time delay in a feedback loop. In addition to that, 
many control design principles to obtain satisfactory loop 
behavior have been presented. There surely exist several 
classifications of control design methods for time delay 
systems. Nowadays, three main groups dominate. The first 
group contains approaches based on Smith predictor structure, 
or more precisely its modifications [8], [14]. These methods 
assume model of the controlled system in feedback loop, thus, 
it pertains into IMC (Internal Model Controllers). Second 
group consists of predictive based approaches, mainly using 
state-space description [15]. Last but not least, third group of 
algebraic approaches is assumed [12], [16] – [18]. Extension 
to retarded quasipolynomials utilized in this paper are studied 
in e.g. [19], [20]. 

 
Fig. 1  Block diagram of an autotuner 
 
This contribution brings a novel combination of 

identification test, made with help of biased relay with 
hysteresis, and algebraic controller design approach, based 
on solution of Diophantine equation in a special RMS ring. A 
transfer function of the first and second order with time 
constant and time delay is assumed as an example for 
control applications giving a class of a PID like controllers 
with a Smith predictor structure.  The pole placement 
problem in RMS ring is formulated through a Diophantine 
equation and the pole is analytically tuned according to 
aperiodic response of the closed loop. A general basic scheme 
of the autotuning principle can be seen in Fig. 1. 

II. RELAY FEEDBACK TESTS 
An auto-tuning procedure consists of a process 

identification experiment plus a controller design method. The 
traditional method was proposed by Åström and Hägglund 
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[1], based on a symmetrical relay feedback test when a relay 
of magnitude hr is inserted in the feedback loop. The result of 
the original test was the critical point of the open loop Nyquist 
curve, see e.g. [1], [3], [4]  and naturally the ultimate period 
and the limit cycle amplitude generated by process output. 
However, there are another relays used in identification 
experiments. 

 

 
Fig. 2  Block diagram of an autotuning principle 
 
A biased (asymmetrical) relay experiment according to Fig. 

2 used for identification can give the final model transfer 
functions with a time delay terms. It is well known that many 
stable industrial processes can be adequately approximated by 
the model for first order (stable) systems plus dead time 
(FOPDT). It is supposed in the form: 
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and the process gain can be computed by the relation [24]: 
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The time constant and time delay terms are given by [11]: 

 
2 2

0
2 2

2 2

16
1

2

2
2

u

r

u

u r

T K u
T

a

T Tarctg arctg
T a

π π

π επ
π ε

⋅ ⋅
= ⋅ −

⋅

⎡ ⎤
⎢ ⎥Θ = ⋅ − −
⎢ ⎥−⎣ ⎦

 (3) 

 
where ar and Tu are depicted in Fig. 3 and ε is the hysteresis. 

Similarly, the second order model plus dead time (SOPDT) 
is assumed in the form: 
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The gain is given by (2), the time constant and time delay 

term can be estimated according to [11] by the relation: 
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Fig. 3  Biased relay oscillation of stable processes. 

III. 3 ALGEBRAIC CONTROL DESIGN 
Rings and linear (Diophantine) equations have become 

common tools in modern control theory before decades. There 
are several rings, the ring of polynomials RP, the ring of stable 
and proper rational function RPS etc., see e.g. [12], [13], [17] 
which can be used for control syntheses. Different rings 
require various approximations of delay terms which reduce 
quality of a model. The most known is the Pade 
approximation, respecting the relative degree of the original 
transfer function. As a negative consequence, the final 
controllers have usually higher degrees.  

This paper utilizes a ring of stable and proper meromorphic 
functions RMS omitting any approximation which was 
developed especially for delay systems by Zítek and Kučera in 
[23]. An element of this ring is a ratio of two retarded 
quasipolynomials y(s)/x(s). 

A retarded quasipolynomial x(s) of degree n means 
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where retarded refers to the fact that the highest s-power is 

not affected by exponentials. A more general notion called 
neutral quasipolynomials also can be used in this sense, see 
[18]. A quasipolynomial in the form of (6) is stable when it 
owns no finite zero s0 such that Re{s0} ≥  0.  For stability 
tests, see e.g. in [23], [24].  

The denominator of the ratio in RMS is supposed to be 
stable, while the numerator y(s) of an element in RMS can be 
factorized in the form ( ) ( ) exp( )y s y s s= −Θ , where the term Θ 
≥ 0 and ( )y s  is any retarded quasipolynomial. The ratio 
y(s)/x(s) is called proper when the degree of the numerator is 
less or equal to the degree of the denominator. 

A linear time-invariant delay system can be expressed as a 
ratio of two elements of the RMS ring. The first order system 
with input-output time delay can be expressed by 
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The traditional feedback loop for the control design is 

displayed in Fig. 4. Generally, let a model transfer function be 
expressed as 
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and a controller be given by a ratio 
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Similarly, reference and load disturbance signals can be 

expressed by 
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The aim of the control synthesis is to (internally) stabilize 

the feedback control system with asymptotic tracking and load 
disturbance attenuation. 

 

 
Fig.4  Feedback (1DOF) control loop 

 
The first step of the stabilization can be formulated in an 

elegant way in RMS by the Diophantine equation 
 
( ) ( ) ( ) ( )0 0 1A s P s B s Q s+ =  (12) 
 
where P0(s) a Q0(s) is a particular solution from RMS. Since 

for stable systems, the RMS ring constitutes the Bézout domain 
(see [23]), the solution of (7) always exists. All stabilizing 
controllers can be expressed in a parametric form by 
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where Z(s) is an arbitrary element of RMS. The special choice 
of this element can ensure additional control conditions. 
Details and proofs can be found e.g. in [12], [13], [17], [19]. 
Asymptotic tracking and disturbance attenuation result from 
expression for E(s) which reads 
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and they lead to the condition  that both Fw(s) and FD(s) divide 
P(s). Details about divisibility in RMS can be found, e.g. in 
[13], [23]. 

The control design can be also performed in a different ring 
which is traditional for non-delayed systems. This ring is 
called the ring of proper and stable rational functions RPS, see 
[13], [17], [19], [21]. The algebraic tools mentioned above in 
(12) – (14) can be adopted similarly. Any transfer function 
G(s) of a (continuous-time) linear system is expressed as a 
ratio of two elements of RPS. The set RPS means the ring of 
(Hurwitz) stable and proper rational functions.  Traditional 
transfer functions as a ratio of two polynomials can be easily 
transformed into the fractional form simply by dividing, both 
the polynomial denominator and numerator by the same stable 
polynomial of the appropriate order. Then all transfer 
functions can be expressed by the ratio: 
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It is clear that fraction (15) can be considered as a special 
case of (7) for ϑ= 0. Then all feedback stabilizing controllers 
according to Fig. 4 are given by the same Diophantine 
equation (12) but in the ring RPS. Then all feedback controllers 
(13) can be utilized. In contrast of polynomial design, all 
controllers (13) are proper. 

IV. BASIC ANISOCHRONIC AUTOTUNERS  

A. First order model 
A first order delayed model (FODPT) where parameters K, 

T and Θ are estimated via relay identification test (2) - (3).  
The model coprime factorization in the RMS ring can be then 

expressed by 
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where m0 > 0 is a free (selectable) scalar parameter. 
The control loop is considered as a simple feedback system 

(Fig. 4) with plant and controller transfer functions (8), (9), 
respectively.  Both external inputs (10), (11) are supposed as 
step functions.  

The stabilizing Diophantine equation (12) reads 
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Choose ( )0 1Q s = which yields 
 

( ) ( )0
0

exp
1

s m K s
P s

Ts
+ − −Θ

=
+

 (18) 

 
Obviously, this solution does not satisfy the requirements of 

asymptotical reference tracking and disturbance attenuation, 
since ( )0 0 0P ≠ , thus, the particular solution ought to be 
parameterized as 
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In order to have ( )P s  in a simple form satisfying 

( )0 0 0P = , choose 
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which gives the controller denominator and numerator by 
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according to (8). Thus, the final anisochronic controller 
structure reads 
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where m0 serves as a tuning parameter. The denominator in 

(21) has infinite number of poles. The construction of this 
controller is more complex than usual PI or PID controllers. 

The first order systems (16) for the RPS synthesis is 
supposed with �=0  and the Diophantine equation (12) in this 
ring  can be easily transformed into polynomial equation: 
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with general solution: 
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where Z is free in the ring RPS. Asymptotic tracking is 

achieved by the choice: 

 0m
Z

TK
= −  (25) 

 
and the resulting PI controller is in the form: 
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where parameters q1 a q0 are given by: 
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It is obvious that scalar parameters m0 also in this case is a 

tuning parameter. 
 

B. Second order model 
A second order model with dead time (SOPDT) has form 

(4) which can be expressed in RMS as a ratio  
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Similarly as in (16) and (17) for a first order model, a 

stabilizing (non unique) particular solution of (12) can 
obtained as 

( ) ( ) ( ) ( )
( )

2
0

0 0 2

exp
1,

1

s m K s
Q s P s

Ts

+ − −Θ
= =

+
  (29) 

 
and the parameterization (13) enables to satisfy the reference 
tracking and disturbance attenuation with the option 
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Then the numerator and denominator result in 
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The controller structure is then 
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The second order synthesis in RPS also supposes �=0  in 

(28) and the design equation (12) leads to the form: 
 

2 2 3
0 2 1 0 0( 1) ( ) ( )Ts s p K q s q s q s m+ ⋅ ⋅ + ⋅ + + = +  (33) 

 
After similar manipulations, the resulting PID controller 

gives the transfer function: 
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with parameters: 
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For both systems FOPDT and SOPDT the scalar parameter 

m>0 seems to be a suitable „tuning knob” influencing control 
behavior and various properties of the closed loop system. 

Naturally, both derived controllers correspond to classical 
PI and PID ones. It is clear that (26), (27) represents the PI 
controller: 
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and the conversion of parameters is trivial. Relation (17) 

represents a PID in the standard four-parameter form (see e.g. 
Åströn and Hägglung, 1995): 
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The program realization of proposed controllers is quite 

easy. Fig. 5 demonstrates the Simulink scheme of the 
anisochronic structure of proposed controller (32) and the 
traditional PID controller (34) is simulated in a standard way. 

 

 
 

Fig. 5  Matlab-Simulink scheme of controller (26) 
 

A program system for design, tuning and simulation of 
introduced autotuning and control method was developed in the 
Matlab-Simulink environment. The Main menu of this program 
can be seen in Fig. 6. The program system is designed in  a 
user–friendly philosophy.  

 

 

Fig. 6  Main menu of program system 

At the beginning of the simulation, the controlled transfer 
function is defined and parameters for the relay experiment 
must be entered. Then, the experiment is performed and it can 
be repeated with modified parameters if necessary. After the 
experiment, parameters of the estimated transfer function are 
calculated automatically and controller parameters are 
generated after pushing of the appropriate button. During the 
simulation routine, a standard Simulink scheme is performed 
and required outputs are displayed. The simulation horizon 
can be prescribed as well as tuning parameter m0, other 
simulation parameters can be specified in the Simulink 
environment. In all simulation a change of the step reference 
is performed in the second third of the simulation horizon and 
a step change in the load is injected in the last third.  
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V. EXAMPLES AND SIMULATIONS 
As an example, a stable system with time delay governed 

by the transfer function of the third order was chosen 
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The estimation was performed by the relay feedback 

experiment where asymmetric relay with hysteresis was used 
with adjusted parameters: hr = 0.225 (0.2 when on, -0.25 
when off), ε = 0.05. Limit cycles result in ar = 1.022, Tu = 
56.28. 

The first order model (1) was obtained by the experiment 
approximation using  (2) - (3) is 
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The second order model (3) can be obtained similarly, by 

relations (2) and (5) in the form 
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The step responses of (38) - (40) are pictured and compared in 

Fig. 7. Estimated models (39), (40) were used for the algebraic 
controller design in the sense of transfer functions (7), (28). 
The methodology mentioned in part III in the ring RMS then 
results in the first and second order anisochronic controllers, 
respectively. The final first order controller has the form 
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where parameter m0 = 22.85 10−⋅  was tuned by the 
“equalization” principle. 

The second order model for the tuning parameter m0 = 
27.37 10−⋅ takes the transfer function 
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The tuning parameter m0 can be adjusted by various 

principles, one of them is the “equalization” principle 
proposed in [14]. In both cases (30), (31), comparing the 
appropriate parameters defined the final value of tuning 
parameters.

 
Fig. 7 Step responses of (38)-(40) 
 
Control responses for both models and controllers are 

compared in Fig. 8 (control variable) and in Fig. 9 (controlled 
variable). Reference signal w(t) is changed from 1 to 2 in time  

200t =  and the step load disturbance d(t) = -0.1 is injected at 
t = 400 s. 

 
Fig. 8  Control input – first and second order synthesis in RMS 
 
Control responses are rather slow; however, without abrupt 

changes of control signals (except instants of step changes of 
the reference signal). This result agrees with the philosophy of 
the “equalization” method which suggests a compromise 
between a suitable control response and carefulness to 
actuators. Generally, higher m0 gives faster but more 
oscillating control responses, and vice-versa. Naturally, 
second order approximation as well as control responses 
exhibit better and more acceptable behavior. 

 
Fig. 9  Controlled output – first and second order synthesis in RMS  
Further, PI and PID controllers were derived according to 

the methodology described in the ring RPS. Naturally, transfer 
functions (39), (40) were utilized for the first and second order 
syntheses, respectively. The tuning parameter m0 was chosen 
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from the requirement of aperiodic control behavior, see  [20]. 
The final values for the first and second orders were m0 = 
0.026 and m0 = 0.062, respectively. The final controllers have 
the transfer functions   

 

( )
3 5

1 2

1.7 10 6.7 10
3.5 10R

sG s
s

− −

−

⋅ + ⋅=
⋅

         (43) 

 

( )
5 2 5 5

2 3 2 3

25.67 10 3.90 10 0.15 10
6.9 10 0.6 10R

s sG s
s s

− − −

− −

⋅ + ⋅ + ⋅=
⋅ + ⋅

  (44) 

 
Control responses for both models and controllers are 

compared in Fig. 10 (control variable) and in Fig. 11 
(controlled variable). It is obvious that the controllers derived 
in the RMS synthesis exhibit better responses that classical PI 
and PID ones, especially in responses of load disturbance 
attenuation. 
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Fig. 10  Control input – first and second order synthesis in RPS 
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Fig. 11  Controlled output – first and second order synthesis in RPS 

VI. CONCLUSIONS 
The contribution brings a novel principle of autotuners with 

controller design based on a special ring of meromorphic  
functions. A transfer function with time delay is estimated  
from asymmetric limit cycle data by a biased relay with 
hysteresis. The control synthesis is then performed through a 
solution of the Diophantine equation in the ring of proper and 
stable RQ-meromorphic functions. For first and second order 
models the methodology generates a class of generalized PI or 
PID controllers in the sense of the Smith predictor. The design 
method brings a scalar tuning parameter m0 > 0 that can be 

adjusted by various strategies. The paper also presents the 
traditional control design in the ring of stable and proper 
rational functions. This approach generates for the first and 
second order systems PI and PID controllers.  The illustrative 
example shows the application of the proposed methodology 
in the ring RMS (first and second order) to control of a higher 
order system with time delay. The same system is also 
controlled by traditional controllers derived in the ring RPS for 
comparison. Both methodologies bring a scalar positive 
parameters which can be used as a “tuning knob” for 
influencing of control responses. Naturally, this parameter can 
be subjected to further optimization for obtaining the optimal 
behavior in a given sense.  

 
ACKNOWLEDGMENT 

  
This work was supported by the Ministry of Education, Youth 
and Sports of the Czech Republic under the Research Plan No. 
MSM 7088352102 and by the Europian Regional 
Development Fund under the project CEBIA-Tech No. 
CZ.1.05/2.1.00/ 03.0089. 

 

REFERENCES   
[1] K. J. Åström and T. Hägglund, “Automatic tuning of simple regulators 

with specification on phase and amplitude margins,” Automatica, vol. 
20, 1984, pp. 645-651. 

[2] Ch. Ch. Yu, Autotuning of PID Controllers. London: Springer, 1999. 
[3] A. O´Dwyer, Handbook of PI and PID controller tuning rules. London: 

Imperial College Press, 2003. 
[4] K. J. Åström and T. Hägglund, PID Controllers: Theory, Design and 

Tuning. Research Triangle Park, NC: Instrumental Society of America, 
1995. 

[5] R.F. Garcia and F.J.P.Castelo, “A complement to autotuning methods 
on PID controllers,” in Proc. of IFAC workshop PID ´00, Terrasa, 
2000, pp.101-104. 

[6] R.R. Pecharromán and F.L. Pagola, “Control design for PID controllers 
auto-tuning based on improved identification,” in Proc. of IFAC 
workshop PID ´00, Terrasa, 2000, pp. 89-94. 

[7] C.C.Hang, K.J. Åström and Q.C. Wang, “Relay feedback auto-tuning 
of process controllers – a tutorial review,” Journal of Process Control, 
Vol.12, No6, 2002. 

[8] T. Thyagarajan and Ch.Ch. Yu, “Improved autotuning using shape 
factor from relay feedback”, in Proc. of IFAC World Congres, 
Barcelona,2002, pp. 646-651. 

[9] S. Majhi and D.P. Atherton, “Autotuning and controller design for 
unstable time delay processes,” in Preprints of UKACC Conf an 
Control, Exeter, 1998, pp. 769-774. 

[10] F. Morilla, A. Gonzáles and N. Duro, “Auto-tuning PID controllers in 
terms of relative damping,” in: in Proc. of IFAC workshop PID ´00, 
Terrasa, 2000, pp. 161-166. 

[11] M. Vítečková and A. Víteček “Experimental identification by relay 
methods” (in Czech), in Automatizácia a informatizácia, 2, Bratislava, 
2004, pp.64-72. 

[12] M. Vidyasagar, Control system synthesis: a factorization approach. 
MIT Press, Cambridge, M.A., 1987. 

[13] V. Kučera, “Diophantine equations in control - A survey”,  Automatica, 
Vol. 29, No. 6, 1993, pp. 1361-75. 

[14] R. Gorez and P. Klán, “Nonmodel-based explicit design relations for 
PID controllers,” in Proc. of IFAC workshop PID ´00, Terrasa, 2000, 
pp. 141-146. 

[15] I. Kaya and D.P. Atherton, “Parameter estimation from relay autotuning 
with asymmetric limit cycle data”, Journal of Process Control, Vol. 11, 
No.4, pp. 429-439, 2001. 

[16] M. Fliess, R. Marques, and H. Mounier, “An extension of predictive 
control, PID regulators and Smith predictors to some linear delay 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 279



 

 

systems,” International Journal of Control, Vol. 75, No. 10, pp. 728 – 
743, 2002. 

[17] R. Prokop and J.P. Corriou, “Design and analysis of simple robust 
controllers”, International Journal of Control, Vol. 66, 1997, pp. 905-
921. 

[18] L. Pekař and R. Prokop, “Some observations about the RMS ring for 
delayed systems,” in Proc. 17th Int. Conf. on Process Control ’09, 
Slovakia, 2009, pp. 28-36. 

[19] R. Prokop, Korbel, J. and  Prokopová, Z., “Relay based autotuning with 
algebraic control design,” in Proc. of the 23rd European Conf. on 
modelling and Simulation, Madrid, 2009, s. 531-536. 

[20] R. Prokop, Korbel, J. and O. Líška, “A novel principle for relay-based 
autotuning,” in 13th WSEAS International Conference on ACMOS´11, 
Lanzarotte, Canary Islands,  2011, pp. 167-172. 

[21] L. Pekař and R. Prokop, „Non-delay depending stability of a time-delay 
system,” in Last Trends on Systems, 14th WSEAS International 
Conference on Systems, Corfu Island, Greece,  2010, pp. 271-275. 

[22] L. Pekař and R. Prokop, “Control of Delayed Integrating Processes 
Using Two Feedback Controllers: RMS Approach,” in Proc. of the 7th 
WSEAS International Conference on System Science and Simulation in 
Engineering, Venice, 2008, pp. 35-40. 

[23] P. Zítek and V. Kučera, “Algebraic design of anisochronic controllers 
for time delay systems”, Int. Journal of Control, Vol. 76, No. 16, pp. 
905-921, 2003.  

[24] T.Vyhlídal, “Anisochronic first order model and its application to 
internal model control”, in Preprints of ASR ‘2000 Seminar, Prague, 
2000, pp. 21-31. 

 
 

AUTHOR BIOGRAPHIES 

 
ROMAN PROKOP was born in Hodonin, 
Czech Republic in 1952. He graduated in 
Cybernetics from the Czech Technical University 
in Prague in 1976. He received post graduate 
diploma in 1983 from the Slovak Technical 
University. Since 1995 he has been at Tomas 

Bata University in Zlín, where he presently holds the position 
of full professor of the Department of Automation and Control 
Engineering and a vice-rector of the university.  His research 
activities include algebraic methods in control theory, robust 
and adaptive control, autotuning and optimization techniques. 
His e-mail address is : prokop@fai.utb.cz. 
 

LIBOR PEKAŘ was born in Zlín, Czech 
Republic in 1979. He received B.Sc. degree in 
Automation and Informatics at the Tomas Bata 
University in Zlín in 2002 and M.Sc. degree in 
2005.  Currently, he is a post-graduate student 
and working as an assistant at the Faculty of 

Applied Informatics in Zlín, Department of Automation and 
Control Engineering. His research interests include analysis 
and control of time-delay systems, algebraic methods in 
control theory, autotuning, modeling and simulations. His e-
mail address is : pekar@fai.utb.cz. 
 
 

RADEK MATUŠŮ was born in Zlín, Czech 
Republic in 1978. He is a Researcher at Faculty 
of Applied Informatics of Tomas Bata University 
in Zlín, Czech Republic. He graduated from 
Faculty of Technology of the same university 
with an MSc in Automation and Control 

Engineering in 2002 and he received a PhD in Technical 
Cybernetics from Faculty of Applied Informatics in 2007. He 
worked as a Lecturer from 2004 to 2006. The main fields of 
his professional interest include robust systems and 
application of algebraic methods to control design. His e-mail 
address is: rmatusu@fai.utb.cz. 
 
 
 

JIŘÍ KORBEL was born in Zlín, Czech 
Republic, where he studied automatic control and 
informatics at the Tomas Bata University and 
graduated in 2004. He received a PhD in 
Technical Cybernetics from Faculty of Applied 
Informatics in 2011. He works as a Lecturer 

from  2006. His research activities are: Autotuning, 
polynomial synthesis. His e-mail address is: 
korbel@fai.utb.cz. 
 
 
 

 

 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 280




