

Abstract— Artificial bee colony (ABC) algorithm has been active

research area recently and great number of modifications were

suggested, both for unconstrained and constrained optimization

problems. Our modification that is based on idea that in nature more

than one onlooker bee goes to the promising food source is presented

in this paper. In our approach the candidate solution in onlooker bee

phase is formed using three solutions, while in the original ABC only

one solution is used. Our modified algorithm is tested on the full set

of 24 well known benchmark functions known as g–functions and

proved to obtain better results than the pure ABC algorithm in

majority of the test cases. The results are better both in the terms of

quality and performance.

Keywords—Artificial bee colony, Constrained optimization,

Swarm intelligence, Metaheuristic optimization

I. INTRODUCTION

VER the years many different technics for solving

optimization problems were developed. Besides many

traditional methods, heuristic methods become very prominent.

Special place among heuristic methods belongs to the technics

based on social behavior of certain animals and insects. These

methods are known as swarm intelligence algorithms.

Formally, a swarm can be defined as a group of (generally

mobile) agents which communicate with each other (either

directly or indirectly), by acting on their local environment.

Within these groups, individuals are not aware of the global

behavior of the group, nor do they have any information on the

global environment. Bees' warming about their hive is an

example of swarm intelligence [1]. Swarm intelligence is a

heuristic method that models the population of entities that are

able to self – organize and interact among them. Swarm

intelligence refers to the problem-solving behavior that

emerges from the interaction of such agents, and

computational swarm intelligence refers to algorithmic models

of such behavior [2]. Particle swarm optimization (PSO) and

ant colony optimization (ACO) are two of the most

representative swarm intelligence heuristics.

Particle swarm optimization (PSO) algorithm models social

behavior of flock of birds or school of fish. It was introduced

 Manuscript received December 25, 2011.

This research is supported by Ministry of Science, Republic of Serbia,

Project No. III-44006

M. Subotic is with the Faculty of Computer Science, Megatrend

University, Belgrade, Serbia, e-mail: milos.subotic@gmail.com

by Eberhart and Kennedy in 1995 [3]. Particle swarm

optimization (PSO) is a global optimization algorithm for

dealing with problems in which a best solution can be

represented as a point or surface in an n-dimensional space [4].

Each particle moves through the search space influenced by

their personal experience (it maintains a memory of the best

solution found so far) and the experience of its neighbors.

II. ARTIFICIAL BEE COLONY ALGORITHM

Artificial bee colony (ABC) Algorithm is an optimization

algorithm based on the intelligent behavior of honey bee

swarm.

In ABC system, artificial bees fly around in a

multidimensional search space and some (employed and

onlooker bees) choose food sources depending on their own

experience and also their nest mates’ experience and adjust

their positions [5]. There are number of various optimization

technics that simulate social life of real bees. Although there

are several models based on honeybees [6], our modification is

based on the artificial bee colony (ABC) algorithm. This

model was initially proposed by Karaboga [7] and then lately

formally introduced by Karaboga and Basturk [8]. ABC

belongs to the group of algorithm which simulate foraging

behavior.

The process of searching for nectar in flowers by honeybees

can be observed as an optimization process. A colony of honey

bees can fly in multiple directions simultaneously to exploit a

large number of food sources [9]. The key elements in

biological model of gathering food by honeybees are: food

sources, employed collectors and unemployed collectors. The

quality of a food source depends on many factors, such as the

proximity to the hive, the concentration of food and how easy

it is to extract it. In order to simplify representation of the

profitability of a food source, it is possible to assign it a

numerical value that is called fitness.

Employed collectors are associated with a particular food

source which is exploited by them. Employed bees share

information such as location and profitability of food source

with the rest of the colony. Unemployed collectors are

constantly looking for a food source to exploit. We can divide

them into two groups: scout bees and onlooker bees. Scout

bees are searching in the vicinity of the hive for new food

sources. Onlooker bees are waiting in the hive and choosing a

Artificial bee colony algorithm

for constrained optimization problems

modified with multiple onlookers

Milos Subotic

O

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 314

food source based on the information shared by employed

bees. Information about food sources is shared by the

employed bees in a form of dance called waggle dance. Since

dances of the most profitable sources have a longer duration,

they are more likely to be observed by unemployed bees,

increasing the probability of a collector bee choosing that food

source.

When a food source is depleted, the bee or bees employed

on it become unemployed and they have to decide between

either becoming a scout bee and find another food source to

exploit randomly or returning to the hive as onlooker bees and

waiting for information about other food sources currently

exploited.

An important difference between the ABC and other swarm

intelligence algorithms is that in the ABC algorithm the

possible solutions represent food sources (flowers), not

individuals (honeybees). In other algorithms, like PSO, each

possible solution represents an individual of the swarm. In the

ABC algorithm the quality of solution is represented as fitness

of a food source. Fitness is calculated by using objective

function of the problem.

The whole colony of artificial bees is divided into 3 groups:

employed bees, onlooker bees and scout bees. The number of

employed bees is equal to the number of food sources and an

employed bee is assigned to one of the sources. The

exploitation process is performed by employer bees. Employed

bee will generate a new solution (mutant solution) by using

nearby food source and then retain the best solution (in a

greedy selection). The number of onlooker bees is also the

same as the number of employed bees and they are allocated to

a food source based on their profitability. Like the employed

bees, they calculate a new solution from its food source. They

also carry out exploitation process. After certain number of

cycles, if food source cannot be further improved, it is

abandoned and replaced by randomly generated food source.

This is called exploration process and it is performed by the

third group of bees in the colony – scout bees. The solutions in

the ABC algorithm are represented as food sources. The food

sources are D-dimensional vectors (where D is the number of

variables of the problem). Each one of the variables in the

solution is associated with a range (Li ≤ xi ≤ Ui) , which must

be considered when we randomly generate, with a uniform

distribution, the initial solutions (food sources). Li and Ui

represent lower and upper limit of parameter xi.

At the first step, a randomly distributed initial population is

generated. The number of solutions equals SN, and the colony

size is 2*SN. Each solution is represented by a D-dimensional

vector, where D is the number of optimization parameters.

After initialization, the population is modified MCN times,

where MCN is total number of iterations. The modifications

are performed by employer bees, onlooker bees and scout

bees. An employed bee modifies the solution in her memory

depending on the local information (visual information) and

tests the nectar amount (fitness value) of the new food source

(new solution). Employer bee keeps in memory the solution

with better fitness value. After search process is completed by

all employer bees they share the information about food

sources and nectar amount with the onlooker bees on the dance

area throughout a waggle dance. An onlooker bee evaluates

the nectar information collected from all employed bees and

chooses a food source with a probability related to its nectar

amount. Onlooker bee produces a mutant solution in the

similar way as employed bee. She also keeps the solution with

better fitness value. An onlooker bee chooses a food source

depending on its probability value. Probability is calculated by

using formula Eq. 1.

 (1)

where fiti is the fitness value of the solution i which is

proportional to the nectar amount of the food source in the

position i and SN is the number of food sources which is equal

to the number of employed bees. Equation 2 is used for

production of mutant solution by employer and onlooker bees.

 vij = xij + φij(xij − xkj) (2)

where k ∈ {1, 2, ... ,SN} and j ∈ {1, 2, ... ,D} are randomly

chosen indexes. Although k is determined randomly, it has to

be different from i. φi,j is a random number between [−1, 1].

SN is the number of solutions, and D is number of parameters

of evaluation function. If a parameter value produced in this

process exceeds its predetermined boundary value, it is set to

boundary value.

 (3)

Where Li and Ui are lower and upper limit of parameter xi

When food source is depleted, bees abandon it. In the ABC

this happens after solution was not improved after certain

number of cycles. This predetermined number of cycles is

called limit for abandonment or just limit. Then the new food

source is found. In ABC exploration process is carried out by

scout bees. Scout bee produces a new solution randomly.

In ABC there are only three parameters to be modified:

number of solutions, total number of iterations (cycles) and

abandonment limit. Number of solutions (SN) represents the

total number of solutions as well as the number of employer

bees and number of onlooker bees. The colony size is 2*SN.

Total number of iterations (MCN) represents max number of

cycles.

Short pseudo – code of the ABC algorithm is:

 Initialize the population of solutions

 Evaluate the population

 Produce new solutions for the employed bees

 Apply the greedy selection process

 Calculate the probability values

 Produce the new solutions for the onlookers

 Apply the greedy selection process

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 315

 Send scout bees

 Memorize the best solution achieved so far

III. CONSTRAINED OPTIMIZATION PROBLEMS

The term optimization can be defined as:

• To make as perfect, effective, or functional as possible

• To make optimal; to get the most out of; to use best

In mathematics, to optimize means finding the best solution

to a problem, where best is considered an acceptable (or

satisfactory) solution, which must be absolutely better than a

set of candidate solutions, or all candidate solutions. In

applications, optimization is used in engineering and

economics.

Constrained optimization is the minimization of an objective

function subject to constraints on the possible values of the

independent variable. Constraints can be either:

• equality constraints

• inequality constraints

Many real-world optimization problems require besides

maximization (minimization) of objective function that certain

constrains are satisfied. We can define the general constrained

problem, without loss of generality, as:

Minimize: f(x), subject to

gm(x) ≤ 0, m = 1, . . . , ng

hm(x) = 0, m = ng + 1, . . . , ng + nh

xi ∈ dom(xi)

where ng and nh are the number of inequality and equality

constraints respectively, and dom(xi) is the domain of the

variable xi. These constraints often limit feasible solution

space to a small subset [10].

Given a point x in the feasible region, a constraint gi(x) ≥ 0

is called active at x if gi(x) = 0 and inactive at x if gi(x) < 0.

Equality constraints are always active. The active constraints

are particularly important in optimization theory as they

determine which constraints will influence the final result of

optimization problem.

For unconstrained optimization problems the greedy

selection is used for keeping better solution after employed

bee and onlooker phase. Our multiple onlooker modification

of ABC algorithm, as well as original ABC algorithm, uses

Deb’s rule [11] to deal with constrained optimization

problems. Deb’s method consists of three very simple heuristic

rules. It uses a tournament selection operator, where two

solutions are compared at a time using the following criteria:

1. Any feasible solution is preferred to any infeasible

solution

2. Among two feasible solutions, the one having better

objective function value is preferred

3. Among two infeasible solutions, the one having smaller

constraint violation is preferred

It is very time consuming process to create feasible initial

population, and for some optimization problems it is not even

possible to initialize feasible solutions using random numbers.

Hence, nor ABC algorithm, nor our proposed modification,

consider the initial population to be feasible.

IV. MULTIPLE ONLOOKER MODIFICATION OF THE ABC

ALGORITHM

It is observed that real onlooker bees in nature go to the

food source that is marked as promising by several employed

bees. In the original ABC algorithm mutant solution is

produced using a solution from one employed bee. Hence if

that solution is very far from optimum, the new mutated

solution will be probably very far from optimum solution too,

even if it is better than solution from employed bee. But if

there are a several employed bees, the influence of one

solution is smaller. Original ABC algorithm uses the Eq. 2 to

produce candidate solution in onlooker phase.

In real life onlookers are going to areas where more than

one employed bee has found promising food source. Our

modification uses three employed bees to create mutant

solution in onlooker bee phase. We conducted the experiments

with different number of solutions that are used in forming a

mutant solution, but for 20 food sources (colony size 40) that

we have used in this paper best results are obtained with three

solutions. Results obtained from these experiments for various

colony sizes are showed on next graph. Best solution is

presented as 100%; other solutions are presented as percentage

of best solution. The experiments are performed for 1 to 5

solutions that are forming candidate solution, for 20, 40 and

100 solutions in total and for all test functions. Y axis shows

the percentage of best solution, while X axis shows the number

of solution that participates in forming a mutant solution. For

totals of 20 and 40 solutions best results are obtained when

mutant solution is formed from three solutions, while best

results for total of 100 solutions are obtained when four

solutions forms new solution.

Fig. 1. comparison of results obtained for various number of

solutions that forms mutant solution

When colony size is increased, the number of solution that

are participating in forming a mutate solution used for

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 316

obtaining best results increase too.

In multiple onlooker approach the solutions have to be

sorted by probability before onlooker bee phase. The bees in

nature are coming from same area, so when solutions are

sorted, the mutant solution is formed from solutions that are

have the smallest distance between themselves in all set of

solutions. Our modification of ABC algorithm uses next

expression to calculate the parameter for candidate solution:

vij = xij + a1φij(xij − xk-1j) +

 + a2φij(xij−xkj) + a3φij(xij − xk+1j) (4)

where vij is a parameter of mutant solution, xij is a parameter

of the current solution and xk-1,,j, xkj, xk+1,j are parameters of

three neighbor solutions sorted by probability. It is obvious

that i must be different from k, k – 1, and k + 1; a1, a2 and a3

are quotients that show how much influence on the new

solution one particular solution has. In multiple onlooker

approach three neighbor solutions do not participate equally in

forming a mutant solution. Our empirical experiments shows

that best results are obtained when a1 = 0.3, a2 = 0.4 and a3 =

0.3. Strongest influence has the middle neighbor solution, thus

it has the largest factor of 0.4. Other two solutions have equal

factors of 0.3.

Here we present the steps of MO-ABC algorithm. The first

step is initialization of populations by using Eq. 5 and

evaluation of solutions.

 (5)

After evaluation, next steps are repeated MCN times where

MCN is maximum number of cycles. In every iteration of this

loop new solutions for employed bees are being produced by

using Eq. 2 and evaluated. Better solution is chosen between

current and mutant by using Deb’s rule. Probability for each

food source is calculated by using Eq. 1. After calculation of

probabilities for every solution, sorting the solutions by

probability is executed. Then for each onlooker bee,

production a new solution vi is performed by using Eq. 6.

 (6)

where vij is a parameter of mutant solution, xij is a parameter

of the current solution and xk-1,,j, xkj, xk+1,j are parameters of

three neighbor solutions sorted by probability. Rj is randomly

chosen real number in the range [0,1] and j ∈{1, 2,...,D}, a1, a2

and a3 are quotients that are showing how much influence on

the new solution one particular solution has. MR, modification

rate, is a control parameter that controls whether the parameter

xij will be modified or not. This is a new parameter that

Karaboga and Basturk added to the ABC algorithm for

constrained optimizations [12]. Our experiments showed that

using of this parameter helped in achieving better results

compared with a version without this parameter. Therefore, as

in ABC for constrained optimization, this parameter was

included in our modification of ABC algorithm. Then new

solutions are evaluated. Again, better solution is chosen by

using Deb’s rule. In scout bee phase abandoned solutions are

found by using "limit" parameter and then replaced with a new

randomly produced solution by using Eq. 4. Best solution

achieved so far is memorized and the algorithm goes at the

first step of the loop. Short pseudo-code of the MO-ABC is

given below:

Evaluate the population

 cycle = 1

 repeat

 Produce new solutions for employers by using

 Eq. 2 and evaluate them

 Choose better solution

 Calculate probabilities by using Eq. 1.

 Sort solutions by probability

 Produce new solutions for onlookers by using

 Eq. 5 and evaluate them

 Choose better solution

 Send scout bees

 Memorize the best solution achieved so far

 cycle = cycle + 1

 until cycle = MCN

V. EXPERIMENTAL RESULTS AND DISCUSSION

Multiple onlooker ABC algorithm (MO-ABC) is compared to

the original ABC algorithm. Settings for MO-ABC are given

in Table 1.

TABLE I

CONTROL PARAMETERS FOR MO – ABC

Parameter Symbol Value

Solutions Number SN 20

Total number of cycles MCN 6000

Limit limit MCN / (2 * SN) = 150

Modification Rate MR 0.8

Weight quotient for 1
st

neighbor solution

a1
0.3

Weight quotient for 2
nd

neighbor solution

a2
0.4

Weight quotient for 3
rd

neighbor solution

a3
0.3

Table 2 contains a summary of the main characteristics of the

test problems. Table 3 shows comparison of the first 13

benchmark functions published in [12] and Table 4 shows

comparison for functions g14–g24. Experiments were repeated

30 times each using random population with different seeds.

Better results in Tables 3 and 4 are bolded. To evaluate the

performance of the proposed algorithm and to make a

comparison with original ABC algorithm, we used the

benchmark constrained optimization functions proposed in

[13]. This set of benchmark function illustrates well different

types of numerical optimization problems.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 317

TABLE II

CHARACTERISTICS OF TEST FUNCTIONS

f n Type
of f.

ρ (%) li ni le ne a

g01 13 quad. 0.0003 9 0 0 0 6

g02 20 nonl. 99.9973 2 0 0 0 1

g03 10 nonl. 0.0026 0 0 0 1 1

g04 5 quad. 27.0079 4 2 0 0 2

g05 4 nonl. 0.0000 2 0 0 3 3

g06 2 nonl. 0.0057 0 2 0 0 2

g07 10 quad. 0.0000 3 5 0 0 6

g08 2 nonl. 0.8581 0 2 0 0 0

g09 7 nonl. 0.5199 0 4 0 0 2

g10 8 linear 0.0020 6 0 0 0 6

g11 2 quad. 0.0973 0 0 0 1 1

g12 3 quad. 4.7697 0 1 0 0 0

g13 5 nonl. 0.0000 0 0 1 2 3

g14 10 nonl. 0.0000 0 0 3 0 3

g15 3 quad. 0.0000 0 0 1 1 2

g16 5 nonl. 0.0204 4 34 0 0 4

g17 6 nonl. 0.0000 0 0 0 4 4

g18 9 quad. 0.0000 0 13 0 0 6

g19 15 nonl. 33.4761 0 5 0 0 0

g20 24 linear 0.0000 0 6 2 12 16

g21 7 linear 0.0000 0 1 0 5 6

g22 22 linear 0.0000 0 1 8 11 19

g23 9 linear 0.0000 0 2 3 1 6

g24 2 linear 79.6556 0 2 0 0 2

Parameter n denotes the number of parameters. The function

can be linear, nonlinear (nonl.) or quadratic (quad.), li is the

number of linear inequality constraints, ni is the number of

nonlinear inequality constraints, le is the number of linear

equality constraints, ne is the number of nonlinear inequality

constraints, a is the number of active restrictions and ρ is a

percentage of the feasible area. A percentage of feasible area

is:

 ρ=|F|/|S| (7)

where |F| is the number of feasible solutions and |S| is the total

number of solutions randomly generated. Michalewicz and

Schoenauer [13] suggested a total number of 1,000,000

solutions for |S|.

It is shown in Table 3, that results obtained using MO-ABC

are better than results obtained by original ABC algorithm for

constrained optimization problems. The g02 function

illustrates that due to greater exploration power of MO-ABC

algorithm, better best results are reached, but also the worst

result is slightly worse than result from original ABC. The

standard deviation for g02 function is somewhat inferior for

the same reason. MO-ABC reaches much better results for g13

function then the original ABC algorithm.

TABLE III

COMPARISON OF RESULTS OBTAINED BY ORIGINAL ABC AND MO-ABC

FOR G01 – G13 FUNCTIONS

Function
Optimum

 Method

ABC MO-ABC

g1
-15,000

Best
Mean
Worst
Std. Dev.

-15.000
-15.000
-15.000
0.000

-15.000
-15.000
-15.000
0.000

g2
-0,803619

Best
Mean
Worst
Std. Dev.

-0.803598
-0.792412
-0.749797

0.012

-0.803605
-0.793506
-0.744311

0.014

g3
-1,0005001

Best
Mean
Worst
Std. Dev.

-1
-1
-1

0.000

-1
-1
-1

0.000

g4
-30665,538672

Best
Mean
Worst
Std. Dev.

-30665.539
-30665.539
-30665.539

0.000

-30665.539
-30665.539
-30665.539

0.000

g5
5126,496714

Best
Mean
Worst
Std. Dev.

5126.484
5185.714
5438.387

75.358

5126.582
5162.496
5229.134
4,78E01

g6
-6961,813875

Best
Mean
Worst
Std. Dev.

-6961.814
-6961.814
-6961.805

0.002

-6961.814
-6961.814
-6961.814

0.000

g7
24,306209

Best
Mean
Worst
Std. Dev.

24.330
24.473
25.190
0.186

24.329
24.444
24.940
0.137

g8
-0,095825

Best
Mean
Worst
Std. Dev.

0.095825
0.095825
0.095825

0.000

0.095825
0.095825
0.095825

0.000

g9
680,6300573

Best
Mean
Worst
Std. Dev.

680.634
680.640
680.653

0.004

680.630
680.632
680.638

0.002

g10
7049,2480205

Best
Mean
Worst
Std. Dev.

7053.904
7224.407
7604.132
133.870

7053.404
7167.873
7418.313

83.002

g11
0,7499

Best
Mean
Worst
Std. Dev.

0.750
0.750
0.750
0.000

0.750
0.750
0.750
0.000

g12
-1

Best
Mean
Worst
Std. Dev.

-1.000
-1.000
-1.000
0.000

-1.000
-1.000
-1.000
0.000

g13
0,0539415

Best
Mean
Worst
Std. Dev.

0.760
0.968
1.000
0.055

0.445
0.465
0.490
0.023

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 318

TABLE IV

COMPARISON OF RESULTS OBTAINED BY OUR IMPLEMENTATION OF

ORIGINAL ABC AND MO-ABC FOR G14 – G24 FUNCTIONS

Function
Optimum

 Method

ABC MO-ABC

g14
-47,764

Best
Mean
Worst
Std. Dev.

No feasible
solutions

found

-46.450858
-45.998005
-45.316806

0.265

g15
961,715

Best
Mean
Worst
Std. Dev.

961.715
961.899
964.508

0.557

961.715
961.876
964.345

0.543

g16
-1,905155

Best
Mean
Worst
Std. Dev.

-1.905155
-1.905155
-1.905155

0.000

-1.905155
-1.905155
-1.905155

0.000

g17
8853,539

Best
Mean
Worst
Std. Dev.

8906.443
9036.270
9225.281
124.023

8939.010
8946.173
8956.243

9.548

g18
-0,866025

Best
Mean
Worst
Std. Dev.

-0.865809
-0.762018
-0.663042

0.094

-0.865958
-0.767066
-0.670531

0.094

g19
32,655

Best
Mean
Worst
Std. Dev.

34.196
35.863
37.613
0.686

33.778
35.315
37.373
0.690

g20
No feasible

solution

Best
Mean
Worst
Std. Dev.

No feasible
solutions

found

No feasible
solutions

found

g21
193,724

Best
Mean
Worst
Std. Dev.

287.253415
473.151297
987.385078
250.094567

329.120
329.438
329.757

0.451

g22
236,430

Best
Mean
Worst
Std. Dev.

No feasible
solutions

found

No feasible
solutions

found

g23
-400,055

Best
Mean
Worst
Std. Dev.

No feasible
solutions

found

No feasible
solutions

found

g24
-5,508013

Best
Mean
Worst
Std. Dev.

-5.508013
-5.508013
-5.508013
6,64E-10

-5.508013
-5.508013
-5.508013

0.000

Exploration capabilities of MO-ABC are even more

obvious by looking at g14 function. While original ABC

cannot find any feasible solution, MO-ABC reaches feasible

solution near optimum solution. MO-ABC is also incapable to

find solutions for g20, g22 and g23 functions. It is due to their

very small feasible area. The results for g01, g03, g04, g06,

g07, g08, g09, g11, g12, g15, g16, g18 and g24 are very close

to their optimum solutions, hence there is no much space for

improvements. MO-ABC obtains better best results for 8

functions, while original ABC obtains better results for 3

functions. MO-ABC reaches 11 better mean results, while

ABC never achieves better mean result than MO-ABC. Also

MO-ABC obtains better worst results for 11 test functions,

while original ABC finds better worst results for only 1

benchmark function. Standard deviation (Std. Dev.) obtained

by MO-ABC is better for 10 benchmark functions, while

standard deviation obtained by ABC is better for 2 functions.

Table 5 shows a quick summary of results from tables 3 and 4.

TABLE V

QUICK SUMMARY OF RESULTS

Category
Method

ABC MO-ABC

Best 3 8

Mean 0 11

Worst 1 11

Std. Dev. 2 10

VI. PERFORMANCE MEASURES

After the quality of results has been compared in previous

section, in this section we are illustrating performance of our

modified ABC algorithm, MO-ABC. First some terms will be

denoted and explained for easier understanding of

performance measuring.

Evaluation: Represents calculation of value of the objective

function and the values of the constraints for one solution. The

total number of evaluations of an algorithm is an important

measure of computational cost.

Feasible solution: Represents a solution that satisfies all the

constraints of the optimization function.

Feasible run: Represents a run of the algorithm where at least

one solution is feasible.

Successful solution: Represents a solution that it is equal or

better to the best known value for that test function.

Successful run: Represents a run of the problem where at least

one solution is a successful solution.

ANESS: Represents the average number of evaluations needed

to found a successful solution. It is calculated with the

following formula:

 (8)

In this performance measure low values are desired.

PSR: Represents the percentage of successful runs, calculated

by the next formula:

 (9)

In this performance measure high values are desired.

PFR: It is the percentage of feasible runs, calculated by the

formula:

 (10)

In this performance measure high values are desired.

EVALS: Proposed by Lampinen in [14], EVALS represents

the number of evaluations needed to found the first feasible

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 319

solution in every run of the algorithm. In this performance

measure the best, worst, mean and standard deviation are

reported. In this performance measure low values are desired.

Comparing is made between our implementation of ABC

algorithm and MO-ABC, since there is no performance

analysis of original ABC for constrained optimization

problems published.

The results of ANESS, PSR and PFR are divided into two

tables, hence it makes comparing easier to follow. These

results are shown in tables 6 and 7.

TABLE VI

COMPARING ANESS, PSR AND PFR FOR FUNCTION G01-G15

Function
 Method

ABC MO-ABC

g1
ANESS
PSR
PFR

12398.468
1
1

15293.625
1
1

g2
ANESS
PSR
PFR

-
0
1

80324.500
0.800

1

g3
ANESS
PSR
PFR

143567.345
0.033

0.9

153238.325
1
1

g4
ANESS
PSR
PFR

42567.667
1
1

41266.765
1
1

g5
ANESS
PSR
PFR

-
0

0.7

-
0
1

g6
ANESS
PSR
PFR

143638.333
0.633

1

98756.234
1
1

g7
ANESS
PSR
PFR

-
0

0.9

-
0
1

g8
ANESS
PSR
PFR

1321.543
1
1

1211.333
1
1

g9
ANESS
PSR
PFR

-
0
1

123727.366
0.666

1

g10
ANESS
PSR
PFR

-
0
1

-
0
1

g11
ANESS
PSR
PFR

179654.756
0.033

1

165734.763
1
1

g12
ANESS
PSR
PFR

1193.645
1
1

1225.723
1
1

g13
ANESS
PSR
PFR

-
0

0.800

-
0
1

g14
ANESS
PSR
PFR

-
0
0

-
0

0.667

g15
ANESS
PSR
PFR

234811.456
0.7

0.800

189766.345
1
1

Table 6 shows results for functions g01-g15, while Table 7

presents results for benchmark functions g16-g24. Multiple

onlooker ABC obtains smaller average number of function

evaluation required to find successful solution for benchmark

functions g02, g04, g06, g08, g09, g11, g15, g18 and g24,

while original ABC has lower ANESS values for g01, g03,

g12 and g16. This indicates higher convergence speed of MO-

ABC algorithm compared to original ABC algorithm. The

percentage of successful runs is higher for functions g02, g03,

g06, g09, g11, g15 and g18 when MO-ABC is used. Original

ABC algorithm is always inferior or equal in terms of

percentage of successful run compared to our MO-ABC

algorithm.

This result illustrates the consistency of algorithm. MO-

ABC shows greater consistency compared to ABC algorithm.

PFR shows the ability of algorithm to find feasible solutions.

MO-ABC has higher PFR for g03, g05, g07, g13, g14, g15,

g17, g19 and g21 test functions, while ABC never reaches

higher PFR than MO-ABC.

TABLE VII

COMPARING ANESS, PSR AND PFR FOR FUNCTION G16-G24

Function
 Method

ABC MO-ABC

g16
ANESS
PSR
PFR

32557.711
1
1

33876.543
1
1

g17
ANESS
PSR
PFR

-
0

0.1

-
0
1

g18
ANESS
PSR
PFR

213635.333
0.033

1

87455.111
0.333

1

g19
ANESS
PSR
PFR

-
0

0.9

-
0
1

g20
ANESS
PSR
PFR

-
0
0

-
0
0

g21
ANESS
PSR
PFR

-
0

0.033

-
0

0.166

g22
ANESS
PSR
PFR

-
0
0

-
0
0

g23
ANESS
PSR
PFR

-
0
0

-
0
0

g24
ANESS
PSR
PFR

6877.333
1
1

6656.446
1
1

Tables 8 and 9 show the result of measuring EVALS

performance parameter. The results are divided into two tables

for easier analysis. Table 8 presents EVALS results of g01 –

g12 functions while table 9 shows results for g13-g24

functions.

Our MO-ABC reached better best values of EVALS then

original ABC algorithm for test problems g02, g03, g06, g07,

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 320

g09, g10, g11, g12, g14, g15, g17, g18, g19, g21 and g24,

while original ABC reached better results for g01, g04, g05,

g08, g13 and g16 benchmark problems. This indicates greater

ability of MO-ABC to find feasible solutions. MO-ABC has

better mean results for functions g02, g03, g05, g07, g10, g11,

g12, g14, g15, g16, g17, g18, g19, g21 and g24. ABC has

better mean results for g01, g04, g06, g08 and g09 test

functions.

TABLE VIII

COMPARING EVALS PARAMETER FOR FUNCTION G01-G12

Function
 Method

ABC MO-ABC

g1

Best
Mean
Worst
Std. Dev.

79
360.333

649
154.887

245
654.422

956
149.554

g2

Best
Mean
Worst
Std. Dev.

24
26.765

31
2.657

19
19
19
0

g3

Best
Mean
Worst
Std. Dev.

188563
189664.321

198332
2112.537

187456
189544.870
196688.007

2041.440

g4

Best
Mean
Worst
Std. Dev.

22
23.366

35
2.906

23
24.580

34
2.607

g5

Best
Mean
Worst
Std. Dev.

181446
200324.450

213887
12007.555

185997
199003.008

205876
8790.345

g6

Best
Mean
Worst
Std. Dev.

145
534.876

987
197.378

142
550.785

1203
234.667

g7

Best
Mean
Worst
Std. Dev.

345
699.087

1002
201.320

334
678.876

992
198.345

g8

Best
Mean
Worst
Std. Dev.

27
98.800

201
41.256

29
102.333

205
45.341

g9

Best
Mean
Worst
Std. Dev.

24
126.876

271
56.870

23
139.504

287
61.008

g10

Best
Mean
Worst
Std. Dev.

608
1298.058

1997
503.854

345
1034.876

1455
432.850

g11

Best
Mean
Worst
Std. Dev.

192668
193908.554

194998
130.618

187234
191991.775

193398
127.665

g12

Best
Mean
Worst
Std. Dev.

24
41.922

65
13.089

22
34
57

8.903

Standard deviation of EVALS parameter is better for g01,

g02, g03, g04, g05, g07, g10, g11, g12, g14, g15, g16, g17,

g18, g21 and g24 when MO-ABC is used. ABC reaches better

standard deviation values for g06, g08, g19 test functions.

Better mean and standard deviation values indicate a better

consistency of MO-ABC algorithm compared to original ABC

algorithm.

TABLE IX

COMPARING EVALS PARAMETER FOR FUNCTION G13-G24

Function
 Method

ABC MO-ABC

g13

Best
Mean
Worst
Std. Dev.

178976
181654.197

183002
3612.916

182938
183118
183854
34.619

g14

Best
Mean
Worst
Std. Dev.

-
-
-
-

218034
223902.934

225987
1836.093

g15

Best
Mean
Worst
Std. Dev.

189444
194921.610

201823
1929.056

171982
178095.054

182931
432.098

g16

Best
Mean
Worst
Std. Dev.

110
715.765

1269
303.831

139
705.191

1298
299.865

g17

Best
Mean
Worst
Std. Dev.

194065
204987.519

206456
9294.086

168928
178597.454

183186
8187.416

g18

Best
Mean
Worst
Std. Dev.

939
1543.865

1876
187.867

898
1478.875

1902
185.826

g19

Best
Mean
Worst
Std. Dev.

22
24.961

35
3.710

21
24.591

36
3.960

g20

Best
Mean
Worst
Std. Dev.

-
-
-
-

-
-
-
-

g21

Best
Mean
Worst
Std. Dev.

189007
198408.717

203981
8012.851

186527
195587.046

202581
7988.804

g22

Best
Mean
Worst
Std. Dev.

-
-
-
-

-
-
-
-

g23

Best
Mean
Worst
Std. Dev.

-
-
-
-

-
-
-
-

g24

Best
Mean
Worst
Std. Dev.

29
34.800

39
3.523

27
33.916

38
2.918

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 321

MO-ABC reaches better worst results for functions g01,

g02, g03, g04, g05, g07, g10, g11, g12, g13, g14, g15, g16,

g17, g18, g21 and g24 test functions, while original ABC

obtains better worst results for g06, g08, g09 and g19 test

functions. This is due to ability of MO-ABC to focus on

promising areas of search space.

VII. CONCLUSION

This paper presents multiple onlookers modification of the

artificial bee colony algorithm for constrained optimization

problems. The performance of MO-ABC algorithm is tested on

24 well-known constrained optimization benchmark functions

and compared with results obtained by the original ABC

algorithm. It is shown that our modification of ABC algorithm

for constrained optimization problems can handle tested

functions very well. This indicates a potential practical usage

since many real life problems are constrained problems. Also

from these results it can be seen that MO-ABC has more

exploration power compared to the original ABC. In 8 out of

24 test functions, better results are obtained. Experiments

performed in this paper show that modified ABC (MO-ABC)

has greater ability to find feasible solutions, due to its focus on

promising search space. Multiple onlooker approach showed

greater consistency compared to original ABC algorithm.

REFERENCES

[1] L. Jiann-Horng, H. Li-Ren: Chaotic bee swarm optimization algorithm

for path planning of mobile robots, Proceedings of the 10th WSEAS

international conference on evolutionary computing, 2009, pp. 84-89.

[2] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence,

Wiley and Sons, 2005, pp. 615

[3] Kennedy, J., Eberhart, R.C.: Particle swarm optimization, Proceedings

of the 1995 IEEE International Conference on Neural Networks, 1995,

vol. 4, pp. 1942–1948,

[4] N. Gomez, L. F. Mingo, J. Bobadilla, F. Serradilla, J. A. C. Manzano:

Particle Swarm Optimization models applied to Neural Networks using

the R language, WSEAS Transactions on Systems, Volume 9, Issue 2,

2010, pp. 192-202

[5] L. Jiann-Horng, L. Meei-Ru, H. Li-Ren: A novel bee swarm

optimization algorithm with chaotic sequence and psychology model of

emotion, Proceedings of the 9th WSEAS International Conference on

Systems Theory and Scientific Computation 2009, pp. 87-92.

[6] A. Baykasoğlu, L. Özbakır, P. Tapkan, Artificial Bee Colony Algorithm

and Its Application to Generalized Assignment Problem, Swarm

Intelligence: Focus on Ant and Particle Swarm Optimization, I-Tech

Education and Publishing, ISBN: 978-3-902613-09-7, 2007, pages 532,

pp. 113-144

[7] D. Karaboga, An idea based on honey bee swarm for numerical

optimization, Technical Report TR06, Erciyes University, Engineering

Faculty, Computer Engineering Department, Kayseri, Turkey, 2005,

http://mf.erciyes.edu.tr/abc/publ.htm

[8] B. Basturk, D. Karaboga. An artificial bee colony (ABC) algorithm for

numeric function optimization, Applied Soft Computing, Vol. 8, Issue

1, 2008, pp. 687-697

[9] R. Mohamad Idris, A. Khairuddin and M.W. Mustafa, Optimal

Allocation of FACTS Devices in Deregulated Electricity Market Using

Bees Algorithm, WSEAS Transactions on Power Systems, Vol. 5, Issue

2, Apr 2010, pp. 108-119.

[10] R. M. Gamot, A. Mesa: Particle swarm optimization: Tabu search

approach to constrained engineering optimization problems, WSEAS

Transactions on Mathematics, Vol.7, 2008, pp. 666-675.

[11] K. Deb, An Efficient Constraint Handling Method for Genetic

Algorithms, Computer Methods in Applied Mechanics and Engineering,

Vol. 186, No. 2-4, 2000, pp. 311–338.

[12] D. Karaboga, B. Basturk, Artificial bee colony (ABC) optimization

algorithm for solving constrained optimization problems, LNCS:

Advances in Soft Computing: Foundations of Fuzzy Logic and Soft

Computing, 2007, pp. 789–798

[13] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for

constrained parameter optimization problems, Evolutionary

Computation, 1996, Vol. 4, No. 1, pp. 1–32

[14] J . Lampinen, A constraint handling approach for the differential

evolution algorithm, Proceedings of the Congress on Evolutionary

Computation 2002, volume 2, pp. 1468–1473

Milos Subotic received B.S. in computer science in

2010 from Advanced School of Electrical and

Computer Engineering, Belgrade, Serbia and also

B.S. in economics in 2006 from Megatrend

University of Belgrade.

 He is currently Ph.D. student at Faculty of

Mathematics, Computer science department,

University of Belgrade and works as teaching

assistant at Faculty of Computer Science,

Megatrend University of Belgrade. He is the author

or coauthor of five papers. His current research

interest includes nature inspired metaheuristics.

 Mr. Subotic participated in WSEAS conferences.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 322

