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Abstract—In automotive applications large-scale nonlinear dynanare often deployed for offline and online simulation of the
ical models are utilized for hardware-in-the-loop simulations angal engine behavior. They mostly comprise nonlinear ordinary

model-based controller design. A projection-based order reducti ; ; i o ; ;
of these models, on the one hand, yields substantial advantag;esai?.rflt_:‘remlaI equations and are typically utlized in practice

computational speed and on the other hand, simplifies the controllf@r?g commerqally avall.able mo‘?'e"“g and simulation toqls.
design procedure. In this work a mathematical-empirical approach@line simulations require real-time capable models which
chosen for the order reduction of a real-time diesel engine modelalte computationally very demanding due to their extensive,
is based on recorded time-snapshots for typical system excitationgnlinear structure. These models are often run in hardware-

Flat and nonlinear Galerkin approximations are obtained by projelf\'—the-loop applications, using the engine model on a test

tion onto a lower-dimensional sub-space. In the nonlinear Galerkin

approach a novel scheme for the reconstruction of the omitted st &nch for the validation of the engine control unit (ECU)
is introduced. It makes use of the local model parameters in tR€rformance, and frequently serve for model based controller

local Jacobian matrix, obtained from a linearization of the completkesign [3],[4]. They require very powerful and fast numerical
nonlinear model for various points of a local model network. Thiztegration algorithms. The main requirements for such real-
results from the application of the reduction methods to the engipg,o engine models are: the ability to sufficiently reproduce
model are pre_sented an_d dlsc_:ussed for different reduced model or: ﬁrs tem’ ind ic behavi tati | d d
and the benefits of the iteration scheme are demonstrated. € sys_ eém's main dynamic ?_ avior, computationa spee »an
] ) ) ) _ numerical accuracy and stability. From these standpoints a re-
Keywords—Diesel engine modeling, Model order reduction, S'r‘guction of the complex nonlinear model to a simplified version
gular value decomposition, Snapshot method, Galerkin methods - . . -
Local model network orily containing the main dynamic characteristics seems to be
a very promising approach for subsequent online hardware-in-
the-loop operation as well as controller design procedures.
The main idea behind model order reduction techniques
Modern internal combustion engines are very complex syg-to simplify the original system to its dominating dynamic
tems with a variety of different calibration parameters angiodes by significantly reducing the model order. There exists
actuators. Especially regarding today’s rigorous legal emig- multitude of different model order reduction techniques
sions regulations, conflicting goals between fuel efficiency, jiterature, some of which are specified in section II. In
driveability, performance and emissions must be handled (S8 work a model order reduction will be applied to a real-
Fig. 1), which is a very challenging task for control engineelfme heavy-duty diesel engine model. The engine features a
[11.[2]. single-stage turbocharger and exhaust gas recirculation (EGR),
and measurements can directly be acquired at the test bench
W Timi o for the parameter identification. It offers highly nonlinear
- liming Injection . . . . .
Intake Exhaust  timing dynamics through a wide operating range in engine speed
and torque and constitutes a well-suited application example
for the performance evaluation of model order reduction
approaches. Two powerful methods are applied: the linear
(flat) and the nonlinear Galerkin approximation methods. In
the application of the nonlinear Galerkin method, a novel
approach for the iterative solution of the nonlinear invariant
manifold is adopted. It is based on the idea of decomposing
the operating range into single subdomains (see section IlI)
where the local model parameters in the local Jacobians are
obtained by numerical linearization of the nonlinear model.
Conflicting goals The local Jacobians are assumed to be constant within each
Fuel Efficiency <> Driveability <—> Performance <> Emissions subdomain and then utilized for the iterative solution in the
nonlinear Galerkin manifold (see section V). This approach
provides substantial advantages concerning computation time,
since the local Jacobians can be calculated from the original
The mathematical models used in the automotive industnyodel in an offline a priori linearization. Direct simulation

|. INTRODUCTION

Different input parameters

Spark advance |:>
AJF ratio |::>

Fig. 1. Modern diesel engine’s conflicting goals
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outputs from the original nonlinear model for all states are [1l. LocAL MODEL NETWORK APPROACH

used in the snapshot method for the assembly of the projectign general

matrices (see section IV-D). Modern diesel engines, may it be in the automotive area or
The paper is structured in the following way: in sectio? h dut licati ' ﬁ ety of inbut df

Il the basics of model order reduction with an overview o cavy-duly applications, ofier a variely ol Inputs used for

state-of-the-art techniques are presented. Then, in section ?Hntrol purposes (Fig. 1). As mentioned before, the models

the fundamentals of local model structures of nonlinear moacecfh.SISt of_generglly exter_13|ve systems of coupled nonlinear
ordinary differential equations.

domains are introduced. Section IV describes the principles . :
For a large class of these nonlinear dynamic systems,

of the flat and nonlinear Galerkin methods and shows t Jere exist methods that are based on the identification of
procedure of the snapshot methodology for the ComIOOSitiénbdomains of the system that can sufficiently accurately be

of the projection matrices calculated from a proper orthogonglf : y . Nty rately
decomposition. Section V deals with the iteration on theescrlbecj by local models [20]. The idea is to partition the
. . ) . . . ._utilized operating range of the model into smaller subdomains
nonlinear invariant Galerkin manifold using the local Jacobian. . . . o
and approximate the nonlinear behavior by local models within

In section VI the results of the application of the Galerkmgch of these subdomains. The assembly of the subdomains is

methods to the engine model are given and the performan ﬁ . . .
: . . ed local model network (LMN) which provides multilateral
compared to each other. Section VIl gives a conclusion aﬁaaracterization of the overall system [21],[22]. A schematic

an outlook to forthcoming work. example of such a local model network can be seen in Fig.
Il. M ODEL REDUCTION SCHEMES 2. It shows the operating range in speed and load of a diesel

When dealing with large, complex nonlinear models cor(?-nglne with the single local model domains.
sisting of systems of nonlillnear ordinary differential eql’Jatio The Ioca_tl model ne_tworks are a very frequently adopted
Qgproach in automotive industry because they feature an

s_ystems, therg exist different schemes of modell order red% propriate structure for the representation of nonlinear static
tion. One main group of such methods are singular valy

decomposition (SVD)-based approximation methods. Tha d dynamic systems where the incorporation of prior physical

contain balanced approximations (first encountered in [5 oyv!edge ir_1to the quel strgctgre Is easily possible [23].

Hankel-norm approximations (see [6], [7]), proper Orthogonat:ldl'uonally, in automotive applications at _test benches_ usually
. . 2 ' . ._humerous measurements from the engine are available for

decomposiiion (POD), which comprises the Galerkin pmje\cl('?rious dynamical test runs. Typically, the adopted local model

tion, a}nd_ modal approximation methods. A very W?”'arrang%etwork approaches make use of the input/output data of the
compilation of POD and other model order reduction methog%tem for the identification [24],[25]

can be found in [8] and [9].
The basic idea of POD is the assumption that a state
trajectory in the original state manifold of dimensidncan 80
be approximated by a projection of the trajectory onto a *
lower-dimensional state space (a sub-manifold) of dimension
m < d. In this work the projection is obtained using a Galerkin 20 * @

projection which will be discussed in this paper in section IV. 3 % || = *
Because of the fact that there is no linear system behavior

in this application, the eigenfunctions used for the projection 10 B@@ A
are obtained from an empirical approach, called the snapshot *
method (see section IV-D), which takes advantage of system Sﬁﬂm o
outputs collected in measurements or simulation [10]. 1000 200 2000
The application of the aforementioned model order re- speed
duction methods has already been focus of several publica- ] ] ) )
tions. In [11], the dimension reduction of the dynamics of 59 2 Operating regime modeling using local models
fluid conveying tube is presented, using linear and nonlinear
Galerkin methods and center manifold reduction. In [12] an In contrast to the identification purely from measurement
approach for the identification of the temporal coefficienttata, the local model structure can also be composed from
of an empirical approximator of a process is shown. It uséise known system behavior in the form of nonlinear ordinary
experimental data gained from the process for a POD. [1&fferential equations [26]. In the present work the local
introduces a model order reduction using a nonlinear Galerkitodels, which are derived from the nonlinear model, are used
projection for a finite element model of a horizontal axifor a novel iterative scheme for the solution of the nonlinear
wind turbine which serves for material fatigue assessmeanvariant Galerkin manifold (see section V). The idea of this
in long-time simulations. The application of the method afcheme is based on the notion that for typical operating modes
model reduction is controlled by error estimation. In [14]pf a heavy-duty engine the system dynamics in the vicinity
state aggregation techniques are applied in order to obtaimfaan operating point can sufficiently accurately be described
reduced-order model of tokamak devices. [15] uses Kryldw the local Jacobian matrice4 and B (see section (V-A)).
subspaces for the model order reduction. Further approachiég choice of appropriate operating points for the linearization
can be found in [16], [17], [18] and [19]. and the partitioning of the operating range into adequate
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subdomains, for which the local model parameters are validiscretized by a grid along the partition space axes, using the

is of particular importance. This procedure is to be specifiggtid indicesi; andi, for the description of every grid point in

in the following. the partition space. Then, the following performance function
is minimized over the complete partition space grid:

B. Local Model Network Architecture Z | A* (31 (1), B2 (i2)) — A(9~31(i1),9~92(i2))||3 —  min _
A local model network approximates the behavior of the.i. 1,602,102
nonlinear model within its operating range as good as possible ) )
by using locally valid sub-models. In the following only linear YWhen the constraint
local models will be considered.
The nonlinear model of the system is described by the state
equation

@(t) = f(x(t), u(t)), 1)

with the state vector € R¢ and the input vector € R".

The operating range of the model is described by a so-called
partition space. The partition space is a set of (mostly input)
variablesz = [Z; ... Z,], with which the nonlinear behavior
of the model can sufficiently be described. Within the partition
space of the model a local linearization can be carried out for
an arbitrary stationary operating poiat

Fig. 3. Partition space for two inputs with two local models

__ Of(z,u)
A(z) = . 2
@ = =5, @
A is the (local) Jacobian matrix, representing the local system
dynamics around the operating point. |A™ (21 (i1), Z2(i2)) — A(Z1(i1), Z2(i2))|ly < ¢ (8)

In the local model network approach the partition space 1j<§r the error boundary; is not fulfilled for every grid point

decomposedllntolz smg\lller ﬁ.uad.omamii I(Ejvsr;; subdomin within the partition space, then the number of local models is
possesses a local modetwhich IS Specified by two Componeri“%reased and the optimization procedure is repeated.

its local Jacobian matrix Fig. 3 shows the two local models with the local Jacobians

A, — of (x,u) (3 A1 and A, obtained at the operafing poinis and Z,, as
o g, well as the model transition boundary which is marked by the
. - . black bold line.
and a corresponding validity function In the current work the local Jacobian matrix is obtained
Or = Ok(T1, T2) = Pr(), (4) from a numerical linearization about the respective network

hich defi h £ validity of h local del. T subdomain operating point. It is then adopted in the iteration
which detinés the area of vai ity o each local model. cheme of the nonlinear invariant Galerkin manifold (see sec-
task is now the determination of the locations of the particulgy, - IV-C) for the computation of the vector of the inessential

operating pqiqt@l i" for the local Jacobiand, ... Ay, states. The realization of this approach is shown in section V.
and the validity functionsp; ... ¢,, for each local model,

which will be described below. V. MODEL REDUCTION BY GALERKIN METHODS

For an arbitrary pointz .Of the partition space the local The Galerkin reduction methods were originally introduced
model network approach yields L L o .
for the approximation of dissipative partial differential equa-

.~ - - tion problems. In a geometrical interpretation, they can be

A'(2) = ZAk‘bk(x)’ ®) regarded as an approximation of the system dynamics on the

_ _ k=0 phase manifold by projection onto a sub-space, which is able
with n being the number of local models. to capture the essential dynamical behavior of the original

Fig. 3 shows the example of a two-dimensional partitiogystem. The two methods shown in this paper are the linear
space spanned by the input variables > and two local (also called flat) and the nonlinear Galerkin methods (see
models ¢ = 2). In the application of the diesel engine theections IV-B and IV-C).

input variables could be e.g. the engine speed and the injectiom the general case a nonlinear model of the real process

mass. In this case is obtained from a mathematical-physical modeling approach.
A* (1, 59) = Avdn (F1, B2) + Asdho(F1, F2). 6) Such a model can be written in state space representation as
The locationsz,, &> of the particular operating points for (1) = f(x(t),u(t)), ©)

the local Jacobiangl; and A, of the two local models are with z € R? the state vector of dimensiahandu € R” the
now determined in the following way: the partition space is-dimensional input vector.
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A. System Projection C. Nonlinear Galerkin Method

The assumption is made that only certain modes of theThe nonlinear Galerkin method assumes that an algebraic
original system play a relevant role in the representation tglationship
the system dynamics. In order to reduce the system order, n=0(&) (18)

a projection of the complete differential equation from th((;-@sr‘1 be found which means that the behavior of the modes
iginal - i f . Galerk
original state space onto a sub-space is performed. Galerk s directly determined by the dynamic behavior of the

method now assumes that only the essential modes on id o : ) .
sub-space of the underlying model are important for t modes. Such a relation is called invariant manifold. The
main dynamical behavior, whereas the remaining modes rrgblem in this case is that there is no a priori information
either be neglected completely (flat Galerkin method) or al OUtl an |Inva;r|a3t manifold and the calcm_{tlﬁnon can be.verty
governed by the "main” modes in some algebraic relatigfPMPI€X. Instéad, one can come up with an approximate
(nonlinear Galerkin method) invariant manifold (AIM), which can be found without too

’ .much computational effort. The AIM can be described as the

ch';(s){ar:he solution of equation (9) the following approach 'gpproximate solution of the equation

x =B &+ Py, (10) N = ® f(®1€ + Pon, u). (19)

where¢ € R™ is the vector containing the essential modekhere exist different methods of finding these approximations
andn € R?™ contains the less important remaining model§€e [27], [28] and [9] for more detailed information about
in the reduced system. The matricks and ®, spanm- and the AIM calculation). In this work the approach of Titi [29]

d — m-dimensional sub-space®” and %’. The composition Was used. Here, the dynamicsmpfare disregarded in order to

of these matrices will be the topic of chapter IV-D. obtain a quasi-stationary AIM. (19) then becomes an algebraic
Substituting (10) in (9) yields relation: .
: ®, f(®1€ + P2m,u) = 0. (20)
D&+ Pon) = f(P1€ + Pan,u). (11)

This approach leads to a coupled system of differential-

A projection onto the sub-space®” and % is accomplished algebraic equations (14) and (20). The algebraic part can be
by multiplication of (11) with the matrice@lT and q,g; solved by a fixed-point iteration, which is shown in section V.

T y T R T
By 216+ B oi) = B f( @16+ Banu)  (12) [ gnonnot methodology for POD

<I>2T‘1>1€ + ‘I>2T‘I’27'7 — ‘I’gf(‘l’lﬁ + ®9m,u) (13) In section IV-A the projection of the state space equation
onto the sub-space®” and# was brought up. In this context

Assuming®] &, = I, ] ®, = 0 and®2 &, = 0, ; &, = the matrices®, and &, were utilized, computed from a

I, equations (12) and (13) lead to snapshot analysis, which is the topic of this section.
. - Measurement results and analysis of the complete nonlinear
§=2 f(®1€+ Pomu) (14)  model show that for typical operating conditions of an engine
) - only certain modes show significant dynamic behavior. The
n=2; f(®:1§+ Pom,u). (15) idea behind the snapshot method is to excite the system with

After the projection of the original system two coupled syst-he Inputsw in a way that is typical for the real engine

tems of differential equations are thus obtained. operation. It is based on an empirical cpncept using the outputs
generated from measurements or directly from the model

simulation. It is a well-acknowledged technique, which has

B. Linear Galerkin Method proved to be very efficient in several previous works, see e.g.
) ) _ [18] and [12]. For a defined input signal the states of the

The linear, or also called flat Galerkin method finds afstem are recorded and analyzed according to the dominant
approximation to the system (14),(15) by neglecting the staiggamic behavior. Thei(x d) matrix X is called the snapshot

n:n=0. Flor the approximate solution only equation (14) iecord matrix, wherel is the number of states in the reduced

considered: _ system and: the number of recorded snapshots, according to

E=dTf(®.& u). (16) the simulation time and the time step width. For the assembly

) o ) ) of 2" and? the principal eigenmodes are needed, extracted
Since the remaining states are neglected in this approach, fg, the @ x d) covariance matrix

flat Galerkin method only yields the approximation 1
C=-(X-pwh(x - 21
2~ Bt a7 S(X =X = p)), (21)

whith g containing the mean values over all samples for

Geometrically, the linear Galerkin approach respresents a pf9r, state. The eigenvalugs and the eigenvectors; of the
jection of the original differential equation from the state SPaGe)\ ariance matrix are computed according to
of orderd onto a sub-space of ordet without accounting for

the remainingl — m states. Cs; = \js;. (22)
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For the POD, the eigenvectors @' are assembled in the Jacobian matricegt and B according to
matrices®; and ®, according to the relative magnitude of
the eigenvalues compared to each other: A=

‘I’l = [81 cee S'rn] 5 ‘I’g = [S'rrH-l cee Sd] . (23) . . . .
o ) ) _Using an LMN approach, the operating region of the nonlinear
_ For the application to the diesel engine system, approprigi e is separated into single subdomains (compare Fig. 2).
input signal excitation sequences have to be found. As alreagithin these subdomains, the local Jacobians are computed
mentioned in this section, the aim is to keep only the modggy assumed to be constant for each of these partitions. The

which show distinct dynamic behavior and disregard thgca| jacobians are now applied for the AIM iteration of (20)
remaining ones. Modern internal combustion engines under@%e the following subsection).

strongly dynamic exposures, as for example abrupt load al-
ternations or rapid acceleration maneuvers. These cycles are
accompanied by partly rough actuator position variations. FBr Equation Error Minimization Problem

the composition of the snapshot matrix in order to obtain tpq go1ution of (20) is obtained recursively in the following
preferably much information from the original system, thg,. the equation error is calculated and minimized in order to
input signals should contain as much dynamical portions Eampute the optimal step width in thgdirection. According

possible. Fig. 4 shows one example of the input excitation fg a Taylor series expansion approximation, the changé of
the throttle actuator signal;,,, actuated around its halfwayin the 7 direction is

opened positiony,, = 50%) in a rectangular distribution
with an amplitude of+-20% and superposed with additional of
Af =— An. 2
noise. Corresponding signal sequences have been chosen for f 0 (@, w)Am (25)
the other system inputs.

| 24
ox 0 ou o (24)

Af is used for the calculation of the change pfin the n

throttle valve actuator signal [%)] direction:
90 T T af
80 I Fr :fk+Af:fk+%(xvu>An (26)
70
60 Using the chain rule of differentiation and eq. (10)f/0n
0 yields

of _Ofox  Of

404 on ((&m),u) = om0 893(1)2 (27)

The Jacobian matri®f/0xz = A is computed offline for the

i
20
different operating regimes and is chosen online according to

10 ‘ ‘ ‘ ‘ , : A o
0 2 4 6 8 10 the regime the model is currently running in. Combining the
time[s] equations from above, the current equation error for the next
Fig. 4. Input signal sequence of the throttle actuator pasitig,,. step innp can be computed:
T
re =®5 fi (28)

Of course the range of validity for the snapshot method is
limited. For a certain excitation of the system with certain

Thi1 = D) (.fk- + 8—fA77) =& (.fk + 8—f‘I’ZATI)

input variables, very sufficient results can be obtained in the on ox

reduced model using the same input variables. The method (29)
reaches its limits when additional inputs are actuated that driee error is now used for optimizing the performance function
not accounted for in the snapshot acquisition process. Then 1

the reduced model is not able to correctly map the dynamic J = QTZHMH — gl}?m (30)

response of the original system to these additional inputs.
from which the optimalAn step size follows to
V. ITERATIVE NONLINEAR GALERKIN PROJECTION .
In section IV-C the nonlinear equation (20) emerged. For Anp=—&7 (g) I (31)
reasons of computational speed and accuracy, an efficient O
numerical procedure has to be introduced to find approximaige described iteration scheme is performed in parallel to
solutions on the invariant Galerkin manifold. On this accouite numerical integration of the reduced system states. The
a local linear model structure, described in section Ill, i§gyantage of this method is that due to the fact that the local
adopted, using the local Jacobian for the iteration scheme. j5copians, which are calculated offline for the subdomains
_ ) of the LMN, can be switched online during simulation, a
A. Linearized System constitutive increase in performance with a low additional
The nonlinear system equation (9) can be linearized in tbemputing expense is allowed for. The results obtained are
current operating point (compare to section 111-B), yielding thdiscussed in the following section.
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VI. RESULTS Different input signal and operating condition test cases
The goal of this work was to adapt the model ordefere designed, with three input variables: the throttle actuator

reduction methods described in sections IV and V to a reR0sitionu:,,, the EGR valve actuator position.,, and the

time heavy-duty diesel engine model. The model descripti§h9ine speed..,,. For the snapshot recording procedure and
and the results of the reduction methods are the topics of tHi§ Subsequent proper orthogonal decomposition, these input
variables were varied in the range deployed for the respective

section. use case (compare section 1V-D). Consequently, the model
o order was reduced and the differences in performance of the
A. System description model order reduction methods are discussed.
‘ Case lineng = 600 U/min, tegr = 100 %, usny varied.
Compressor  Intercooler throttle . . . .
P o 7 The throttle _a_ctuator input signal was vane_d_ around_lts halfway
M [ opened position and superposed with additional noise, see also
R Fig. 4. In Fig. 6 the result for the exhaust turbocharger speed
vate is shown for a reduced model order of 10. In the behavior

Engine of the solutions the following can be noticed: the system

fgﬁr dynamics are reproduced sufficiently by both the flat and

the nonlinear Galerkin methods. Obviously, the flat Galerkin

method shows a clear offset from the original solution, which
is also increasing with time.

Exhaust gas

Turbine

Fig. 5. Diesel engine system overview x 10° exhaust turbocharger speed [rpm]

The configuration of the diesel engine is schematical
illustrated in Fig. 5. The model considered was obtained fro
a physical-mathematical modeling approach using the conc
of mean value modeling (MVM) [30],[31]. MVM means the
replacement of the discontinuous operation of the pisto

by continuous processes for mass transportation through . -~

. ) N U original system
cylinders and production of power. The thermodynamic ar 161 ~ — —flat Gal. meth.
chemical processes inside the cylinders during the combust ‘ ‘ _ | = — nonl Gal. meth.
cycles are considered as mean values over a cycle. Si 0 2 4 6 8 10

a simplifying modeling approach is well-suited for realtime tme el

test stand applications because of low computational demagl 6. Exhaust turbocharger speed, reduced system order 10

and thus higher simulation speed. Additionally, it achieves

sufficient accuracy. The model is built up by modularly con- _
nectable zero-dimensional tank components, which reproduc&€xt the order of the reduced system was lowered to nine.
the thermodynamic characteristics inside pipe connectiofid! (€ same input signal the results were compared, see
coolers, etc. They assume perfect mixing of the gas com d9. 7. It can be recognized that for a model Qrder reductlo_n
nents inside so that a homogeneous distribution of pressure S%d°N€ the results of the flat and the nonlinear Galerkin
temperature is sufficiently justified. These storage elements H?Sth"‘?'s show even more S|gn|f|c_ant d|fferen_c§-s. The nonlinear
connected to each other through coupling elements (valvgsalerk'” method traces the solution of the original system very

throttles). The exhaust gas turbocharger is modeled by a qué(‘éer'-"’ whereas the flat method already indicates strong errors

stationary, parameter based approach. The complete sys '€ amplitude. The performancg d|screp§1ncy IS even more
has a state order of 16. The parameters of the model weRvious, when the reduced order is dramatically decreased to

identified using measurements from the test bench. 4 states, see Fig. 8. Here, the solut_ion of the flqt Galerkin
method can not reproduce the dynamics of the original system
any more (outside the plot range), but the nonlinear Galerkin

B. Results method can still perform well, showing decent accord with the

The linear (flat) and nonlinear Galerkin methods were nokeference solution.

applied to the engine model and the results were comparedCase 2:n.,, = 1200 U/min, tegr = 100 %, wip, varied.

to the solution of the original system. The solution of thélere, the throttle actuator input signal was varied according

original system was computed using a fixed-step Runge-Kuttathe sequence given in Fig. 9 for a higher engine speed of

numerical integration method with an integration step sizZ€200 U/min. The results for the exhaust turbocharger speed,

of 0.001s. The original system was also used for the offliike intake manifold pressure and the intake throttle mass flow

calculation of the local Jacobiafdsf /0x. The main focus of are presented in Fig. 10 for a reduced model order of 9.

this work lies in the examination of the general functionality Again, the dynamics of the flat and nonlinear Galerkin ap-

of the two presented Galerkin methods and the sensitivity pfoximations achieve good dynamical accordance, with the flat

the performance with respect to the reduced model order. solution showing a little offset. For a reduction of the reduced
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Fig. 7.

Fig. 8.

model order by one to 8 states (see Fig. 11), no drama
decline of accuracy can be noticed for both approximatic
methods, but another interesting property can be recogniz
the flat Galerkin solution shows signs of numerical instabilitie
for strong amplitudes in the range between 8 and 9 seconds
simulation time, whereas the nonlinear approximation featur
very robust numerical behavior. This is a crucial advantage of
the nonlinear Galerkin method compared to the flat reductig;i
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original system
— — —flat Gal. meth.
— - — - nonl. Gal. meth.

10

time [s]
Exhaust turbocharger speed, reduced system order 9
x 10* exhaust turbocharger speed [rpm]
2.8 ‘ ; ‘
N original system
270~ - Ty [ "| = — —flat Gal. meth. |4
— - —nonl. Gal. meth.
T

time [s]

Exhaust turbocharger speed, reduced system order 4

10

exhaust turbocharger speed [rpm]

x 10
6 T T S
N N A N S
- N N I
ol . . . L= J
0 2 4 6 8 10
x 10" intake manifold pressure [Pa]
1f ‘ ‘
10§ ===
9fF. =~
8 original system
"N-- — flat Gal. meth L L L
——-nonl. Gal. meth. | 4 6 8 10
intake throttle mass flow [kg/s]
0.08[ " ‘ ‘
0.06
0.04

time [s]

Fig. 10. Exhaust turbocharger speed, intake manifold pressure and throttle
mass flow, reduced system order 9

original system
4| — — —flat Gal. meth L L L
——nonl. Gal. meth. | 4 6 8 10
intal

0.08
0.06
0.04

time [s]

Fig. 11. Exhaust turbocharger speed, intake manifold pressure and throttle

s flow, reduced system order 8

when it comes to real-time hardware-in-the-loop applications
where the limitation of the time step width and numerical

stabi

Case 3:ueg = 100 %, uwnr and ne,y varied simultane-

Fig. 9.

lity are very important.

throttle valve actuator signal [%]

701

. e

60

55

50 1
451 1
40 . . . .
0 2 4 6 8
time [s]
Input signal sequences of the throttle actuator positigph-
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ously. In this test case two input variables are varied at the
same time: the throttle actuator position and the engine speed.
The according pattern is shown in Fig. 12.

Analyzing the results for the exhaust turbocharger speed,
the intake and the exhaust manifold pressures (Fig. 13), it can
be clearly seen that already for a system order of 9 the results
of the nonlinear Galerkin method are much better, especially
at the beginning of the simulation.

The difference becomes more distinct again when the
system order is further reduced, in this case from 9 to 8
states (Fig. 14). The nonlinear Galerkin approximation fits the
original solution very well, whereas the flat Galerkin method
result shows poor behavior.

Case 4:uwpr = 20 %, Uegr aNdne,, varied. Again, two
input variables - the EGR valve actuator signal and the engine
speed - are varied according to the pattern given in Fig. 15.

Fig. 16 shows the results for the intake manifold pressure,
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o throttle valve actuator signal [%)] < 10° exhaust turbocharger speed [rpm]
T T T 15 T T ‘
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L L L — — —flat Gal. meth.
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x 10° intake manifold pressure [Pa]
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0 2 4 6 8 10 3r P g
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2000} 4 x 10° exhaust manifold pressure [Pa]
3t o T
1500 [ B 7
2r - B
1000 1 1 1 1 1 1 1 1 1 ]
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]

Fig. 12. Input signal sequences of the throttle actuator positigp. and Fig. 14. Exhaust turbocharger speed, intake and exhaust manifold pressure,

the engine speefleng reduced system order 8
EGR valve actuator signal
x 10* exhaust turbocharger speed [rpm] 100 .
12 T T 3
lg - E 90} i
6 -
4 original system 80} i
2 X X X — — —flat Gal. meth.
0 2 4 6 ——nonl. Gal. meth. p 70} 4
60 L L L L
0 2 4 6 8 10
engine speed [rpm]
2500 T
x 10° exhaust manifold pressure [Pa] 2000 q
1.8 . T T =
16 -:/ - - STt =]~ S B 1500} i
1.4¢ 7 b
12 |
- ! ! ! L 1000 L L L "
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]

Fig. 13. Exhaust turbocharger speed, intake and exhaust manifold pressbi@, 15. Input signal sequences of the EGR valve actuator position and the
reduced system order 9 engine speed

the EGR mass flow and the exhaust manifold pressure for $lates, shows considerable performance declines for reduced
reduced system order 10. When the model order is furth®fStem orders.
reduced - here from 10 to 8 states - again one can see the
considerably better results of the nonlinear method (see Fig. VII. CONCLUSION
17). The results of the nonlinear Galerkin method seem evenn this work the basic principles of flat and nonlinear
more remarkable when the wide range of passed nonlin€agilerkin methods for the model reduction of computationally
system behavior (1000 - 2500 rpm) is envisioned. expensive dynamical systems, applied to a mean value diesel
The results of this section allow for some important corengine model, were presented. The existing approach of the
clusions: The linear and nonlinear Galerkin methods are batbnlinear Galerkin method was combined with an iterative
able to reproduce the main system dynamics very well for higlolution scheme using local Jacobians. The local Jacobians
orders of the reduced model. In the process of decreasing tere obtained from a local model network approach and
model order, the omitting of relevant dynamic states is cleayssumed constant within each operating subdomain. A proper
better compensated by the nonlinear Galerkin method dueotwhogonal decomposition on the basis of the snapshot method
the fact that it can account for these omitted states using fioe the determination of the principal eigenvalues was per-
AIM. The use of the local Jacobian achieves impressive resuitsmed and used for the flat and nonlinear Galerkin reduction
even for running through strongly nonlinear operating regionschemes. The achieved results proved that both the linear and
However, the linear method, completely neglecting the omittesnlinear Galerkin method yield very viable reduced order
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Fig. 16. Intake manifold pressure, EGR mass flow and exhaust manifold
pressure, reduced system order 10
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Fig. 17. Intake manifold pressure, EGR mass flow and exhaust manifi

pressure, reduced system order 8

i)

[19]

models. Subsequent reduction of the model order revealed
significant performance advantages of the nonlinear Galerkin

method using the local Jacobian-based iteration scheme. Thg

low computational expense increase is outweighed by remark-

able benefits in dynamic accuracy.

The obtained results provide an outlook to further ap

[21]

plications in other technical disciplines. Forthcoming work2]
is intended to deal with the comparison of the flat and

nonlinear Galerkin methods with other model order reductigpy
techniques, such as balanced reduction and Krylov-based

approximation methods.
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