INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Guided MaximumEntropy Method Algorithm
for the Network Topology and Routing

Milan TUBA

Abstract—This paper presents an algorithm that applies a guided It is intuitively clear that an optimal network should not
maximum entropy method to the network design problem. Netwokave overloaded or underutilized links. The maximum entropy

design problem is a well known NP-hard problem which almostystraint favors uniform distribution and gives a starting
always involves underdetermined systems, especially when routltn

policy has to be determined. The maximum entropy method is (ﬁ)o'Ogy and routing with smoothly distributed traffic that is

relatively new technique for solving underdetermined systems. \@&Pected to be close to the optimal solution. We adjusted the
adjusted the network design problem, primarily the routing feasibilitpetwork design problem, primarily the routing feasibility, to

to the maximum entropy method requirements. Computationaliife maximum entropy method requirements. Computationally

feasible algorithm is developed which includes additional constrai ; ; ; i
that direct uniformity of the solution in the desirable directior?ﬂQ§as|b|e algorithm is developed which implements the standard

Proposed algorithm computes a reasonable solution that is ropgEximum entropy method, includes adjustments for problems

with respect to often required dynamic changes of the cost functidhat do not involve probabilities initially, calculates a function
This modified method exploits the property of the MEM that it cathat substitutes large sparse matrix, includes heuristic that
smoothly move from cases where constraints can be satisfied to caggseds up calculations by avoiding to invert Jacobian matrix
where constraints become desirable goals that are satisfied as MyCR e jteration, determines variables that define constraints
as possible. A software system was developed which includes all the h inq f ’ ibility. includ dditi | . h

mentioned features. qrt e ro.utlng_ easibility, includes a |t|ona_constrq|nts .t at

direct uniformity of the solution in the desirable direction,

Keywords — Maximum entropy method, Network routing, Com-Cancels opposing traffic and excludes underutilized links.

puter network topology, Optimization, Modeling. Mentioned additional constraints are "soft”, which is a unique
feature of this algorithm, in the sense that they do not have

to be satisfied; the solution will be pulled in the direction of
|. INTRODUCTION satisfying them as much as possible. Some theoretical results

HE network design problem (NDP) is a very interesting"® a_Iso established that direct initial approximation. Proposed

T NP-hard problem of great practical value and since glgorithm computes a reasonable solution that is robust with
is untractable, heuristics and suboptimal solutions have bd&8Pect to often required dynamic changes of the cost function.
used for decades. It involves topology selection (subset of pddle maximum entropy solution can be a good starting point
sible links), routing determination (paths for the offered traffidpr further optimization considering that the cost function
and possibly capacity assignment. The goal is to minimiyéth dela_y penalties involves queuing theory that is usually
the cost, which can be a combination of the link costs af@mputationally expensive.
delay penalties, under possible additional constraints. Network
design and analysis almost always involve underdetermined Il. THE MAXIMUM ENTROPYMETHOD
systems, especially when routing policy has to be determinedThe basic idea of the MEM is to get a unique solution
It is an open problem and since unique best solution can rimim the underdetermined system by introducing the additional
be found, every new approach is promising in the sense tlcanstraint that the entropy function should be maximized. The
solution obtained can be better then previous ones, at leasbiher methods that were used for solving underdetermined
some cases. systems use the same technique: they introduce additional,

The maximum entropy method (MEM) is a relatively nevartificial constraints that make the number of constraints equal
technique for solving underdetermined systems which htsthe number of unknowns. The difference is that the max-
been successfully applied in many different area. It is mosbum entropy method introduces the most natural additional
frequently used in chemistry [1], but also in many othetonstraint: one that does not introduce any new, arbitrary and
very diverse areas: character recognition [2], data analysis [@fwarranted information. It uses only the information that is
image processing [4], [5], economy [6]. Theoretical develogiven and makes no assumptions about missing information.
ments also continue [7]. An analysis of both, network desigmportant property of the MEM is that it makes variables as
problem and maximum entropy method, was done before [@jual as possible.
with the argument that maximum entropy method can be aGeneral MEM model calls for random variables and prob-
reasonable way to approach the network design problem. abilities, but for most problems more suitable is a system of

k equations withn variablesv;, k < n, and constraints:
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Variablesy; are converted to probabilities by normalization: All partial derivatives should be zero:

pi = wi/>j_yv; andm; = 1;/3%  v;. The system

Equation (1) then becomes k

i = e % [1—Qi—/\—ZMr fr(x))] =0, i=1,2,..,n
k2

Sapi=me,  r=12..k @) = @®)
! Sincee™ % is never zero

oF

This is equivalent to the classical definition of the MEM
where it is assumed that for a discrete random variable k
the valuesz, 3, ..., z, that it can take are known, butthe 4 — 1 - ) — Zur fr(ws) i=1,2,..,n (9)
corresponding probabilities,, ps, ..., p, are not known. The —1

expected values fok < n —1 functions of X' (for example, 1,4 problem is now solved: Equations (5), (6), and (9)
the firstk moments) are also known and represent constrainég\:,e n+k + 1 equations forn + k + 1 unknown variables

D1, D2y--oy Dny M1, fH2,-.-, Mk, A. The system should have

E[ f-(X)] = m, =12k ©) unique solution, but it is not linear and some numerical method
Equation (2) (or (3)) gives (together witR' p; = 1) k- has to be used. _ _ o o
1 < n constraints forn unknown variableg,, po, ..., pn. To make the calculations easier, the partition function is

This system is under-determined and has an infinite numpgiroduced:
of solutions. The unique solution is looked for that respects
constraints and maximizes the entropy of the system:

n

n
Z(lu’la ﬂ27-..7 ’[,Lk) = Zpl e*)\ —_ ze,)\iqi
=1

n 1=1
H(pla b2, -y pn) = - K sz ln(pi) 1 n .
- Z(un, iy i) = = 3 eders 5@ (10)
The method of Lagrange multipliers is used. When La- St
grange multipliers\, p1, o, ..., ug are introduced and partial
derivatives equated with zero we gett- £ + 1 equations for
n+k+1 unknown variable®:, po, ..., Pn, f1, 2y ks A-

It is easy to see that

i ; 2 4 A= —InZ(u1, po, ... 11
The system now has a unique solution, but it is not linear and nZ(m, pa k) (11)
some numerical method has to be used. 5

My = (5,u Z’I’LZ(/Ll, H2s -y :U’k)) (12)
A. MEM Solution or "

The method of Lagrange multipliers is used. This will not

guarantee that probabilities are non-negative. The substitution n .
pi = e~ % isintroduced, but this gives a stronger constrainf,, — [mr,fr(xi)]ezjzl wi fil@e) _ 0, r=1,2,..,k
than the one required: all probabilities are now positive definite i1
(none of them can be zero). The problem now is to maximize (13)

Equation (13) represents equations fork unknown vari-

- L ablesyuy, po,..., px. When it is solved, from Equation (11)
Hlqrs g2, an) = ZQZ' e 4 \'is calculated, and then from Equation (8), ¢2,..., qn
=1 are determined , and finally, from = e~% the probabilities
under the conditions p1, pa,..., pn are calculated.
" Substitutiont; = e#i, j =1,2,..., k can be introduced.
Ze—qi -1 (5) Then Equations (11) and (13) become:
i=1 n
n PR 1) IR AR (14)
Zefqif,.(xi) = m,, r=1,2 ..k (6) el
1=1

Lagrange multipliers\, p1, pso, ..., pr are introduced with - kL fi(m) _
the function: > Iy — fr(z) I #25) = 0, r=1,2,...k (15)
i=1
n n There is an algorithm to solve this system. However, the
F(q1, G2,y qn) = Zqi e~ 4 )\Ze—qi (7) function that is to be minimized is not convex even in the
= et simplest case when there is only one constraint: expected
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value. Thestandard Newton-Rapson procedure will not work. [1l. THE NETWORK DESIGN PROBLEM

But the Jacobian matrix for this system is symmetric and computer networks consist of computers, called nodes, and
positive definite. This gives a scalar potential function which igsmmunication lines, called links, that interconnect them. The
strictly convex and whose minimum is easy to find. The use gtwork design problem is:

the second order Taylor expansion is recommended. However, . . ) ] ]
after much experience with the algorithm, our impression is * For given Iogat|ons of nodes, traffic ma.tnx (offered traffic
that it is not even worth trying to find the exact value fothat for each pair of nodes) and cost matrix (cost to transfer
determines how far to go along a certain direction, let alone & Message for each pair of nodes)

inverting the Jacobian matrix every time. For our software « With performance constraints: reliability, delay (time that
system we developed a heuristic that performs well. a message spend in the network), throughput

« Find values for variables: topology (which nodes will be
connected directly with a line and which will have to
communicate indirectly, using other nodes as intermediate
stations), line capacities (how much traffic will each link
be able to carry), flow assignment - routing (which paths

B. Selection Principle

The previous model has constraipts > 0, i = 1,2, ..., n.
This may be too strong since the probabilities need only to be
nonnegative. To makg; > 0, p; ¢? can be introduced

instead ofp; = e~%, which was used before. In that case, = messages between any pair of nodes will follow)
the problem becomes to maximize « Minimize the cost (of building and maintaining the whole
n network).
H(qr, g2, @) = — 22‘131”(%) (16) Other formulations of the problem are: minimize delay for
N i=1 the given cost or maximize throughput for given cost and
under the conditions delay. It has been shown that all these problems are similar
n and that the same techniques can be applied. Different aspects
qu =1 (17) of the network design problem, particularly routing and link
i=1 capacity were investigated [9], [10], [11]. More recent results
n are in [12] and [13] and the latest survey on topology [14].
Zq? fr(xs) = my, r=1,2,...k (18) This problem is intractable if full and exact solution is
i=1 required. Networks can have many hundreds of nodes (com-
Lagrange multipliers are introduced: puters). Fortunately, experience has shown that network design
can be done hierarchically (or bi-level [15]) and still be near
n n optimal. An example is a network for a country. First, we
F(q1, g2 @) = —2) ¢ (@) + A>_a; (19) can decide where to put trunks between major cities, then
=1 =1

connect small cities to nearest major cities, then make local
networks inside the cities. This approach allows us to work
with networks of at most 50 nodes at a time. This is a great
help, but the problem is still intractable.
The network design problem, that was for many decades
investigated with emphasis on wide area networks, is recently
& revitalized with application to mobile ad hoc networks [16],
= —2¢ [QZn(Qi)+1_)\_ZMrfr(xi)] =0,i=1,2,..,n [17], [18]. The other refinements of the problem and_ areas of
= (20) current research are radio networks where the goal is changed

to covering maximum area [19] and quality of service over
Now, the selection has to be made: apycan be zero. heterogeneous networks [20].

k n
+ ZMT Zq'? fr(xz)
r=1 i=1

Partial derivatives should be zero:

OF
dq;

0.5

i=1.2....n IV. ADJUSTMENT OF THENETWORK DESIGN PROBLEM
) ) 9t
(21) FOR THEMEM

When it is decided whicly; are to be zero, the remaining The network design problem has to be fitted to the model
equations will give as many equations as there are unknodescribed in the Section II. Let us consider-mode network
variables. The partition function is equal as in the previowsith given traffic matrixt; ;, line capacity C and total traffic T.
model, and the whole discussion repeats. The only differenites possible to apply MEM if analysis is started with totally

g = 0 or ¢G = 8( _1+)\+Zf=l pr fr(zi) )

is that summations are not carried for ak= 1 to n, but only
for thosei for which ¢; # 0.
This new model is used only to show how the case0

interconnected network of nodes. Initial feasible routing is
then trivial. Some lines will be dropped later in the process of
improving utilization or reducing the cost.

for some: can be included. In practice, we have to decide To apply the maximum entropy method, it has to be decided
which p; will be zero. We can do it in advance and considexhat will be the variables of the system. It may be desirable
a model that has only — m probabilities (ifm probabilities to have as variables the traffic along different lines; that is
are selected to be zero). If we select too many probabilitieswtat should be made as equal as possible. However, these
be zero, the system may become over-determined. variables are too coarse. From them the routing can not be
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determined. Thamore serious problem is that there are nwill increase delays. But some very expensive line may
natural constraints on these variables. This forces us to seleatry very little traffic and the removal of such line would
as variables of the system something finer: the traffic of significantly decrease line costs and only marginally increase
particular message type (message types are distinguisheddblays. Such solution would be overlooked if line costs are
the source and destination for a message) on a particular liret considered.
[8]. The other extreme is when only line costs are considered.
The number of different message typesnis: — 1) (from The best network in that case is the minimum spanning tree.
each node to every other node, except itself). The numberloferesting case is a network that forms a ring when costs are
different lines is also:(n — 1). There is a variable for eachconsidered. Each node has two neighbors to which it can be
pair (message-type, line) so the total number of variablesdennected by inexpensive lines. Connections to any other node
n?(n — 1)2. Constraints that enforce feasible routing can be considerably more expensive. The minimum spanning tree
determined as follows. For each node there is an equation such a network is an open ring. That is the solution if
for each message type. The total number of equations is tly line-costs are considered. It is easy to see that a closed
n%(n — 1), plus the equation that establishes that the sum &ifig is much better solution. By adding that last line that will
all probabilities is equal to 1. In this case, the last conditiotlose the ring, the cost will not increase dramatically, but the
is equivalent to the requirement that the total network traffaverage path length will be almost halved and delay will be
is equal to some given constant within a certain range. Theuch smaller. If delay is included, even with a small weight
equations will express the following conditions: for eachoefficient, in the cost function, the line that closes the ring
transit node the flow-in is equal to the flow-out for eackould not be dropped.
message type separately. For the source nodes and the sinkhe cost function can dynamically change and that is the
nodes, equation is balanced by the required load for particuteason that robust solution is needed. Evolutionary algorithms
message type. [21] that may have very good properties can be to slow for
The matrix for this system is large, but fortunately verguch dynamic adjustments.
sparse. The total number of the elements in the system
isnt(n — 1) (the number of equations times the number VI. NDP ALGORITHM BASED ONMEM
of variables). The density of the matrix is then calculated An algorithm is presented here that uses guided MEM to
as #_1) The density approaches zero with the cube djet a robust solution for the NDP. It first gives the maximum
the number of nodes, which means that is inappropriate emntropy solution (routing) for the system described in Section
impossible to keep such a matrix in the memory. For exampl®. It was mentioned that some numerical method is needed to
for n = 20 there are 144,000 variables with 7,600 equatiors®lve nonlinear system that defines MEM solution. There is an
and density is only 0.003%. We implemented an algorithm fatgorithm to solve this system. However, the function that is
calculating matrix values. to be minimized is not convex even in the simplest case when
there is only one constraint: expected value. The standard
Newton-Rapson procedure will not work. But the Jacobian
matrix for this system is symmetric and positive definite.
Among all possible topologies and associated routings Wéis gives a scalar potential function which is strictly convex
want to select one that is optimal in some sense, usuadigd whose minimum is easy to find. The use of the second
the combination of network cost and delay. In determiningrder Taylor expansion is recommended. However, after much
which line to keep and which to eliminate, an appropriatexperience with the algorithm, our impression is that it is not
cost function is needed [9]. There is no unique best casten worth trying to find the exact value farthat determines
function because the network can be viewed from at leastw far to go along a certain direction, let alone inverting
two different points: network manager's and user’s. From thRe Jacobian matrix every time. For our software system we
network manager’s point of view a line that is expensive t@eveloped a heuristic that performs well.
install is expensive, but from the user’s point of view a line The other problem that was mentioned is that matrix for the
that is introducing long delays is expensive. This two criterigystem is very large, but fortunately very sparse. A function
are always contradictory. The best solution is usually son® implemented that calculates the value of matrix element
compromise between these two extreme positions. A line ce@thout need to store that element.
can be defined as a weighted sum (or some other function) ofAfter the initial solution is obtained some refinements are
the installation cost and the total delay on that line. Genembne. It is never a good idea to have traffic of certain messages
form of the cost function can b€ = C;+ K D. The network from A to B and from B to A, for any pair of nodesd and
cost is the sum of line costs. When the weight coefficiEnt B. The maximum entropy method avoids such situations but it
is set to zero, delays are ignored and when it is set to soe®n not make any probability exactly zero. In the second pass
very large value only delays are considered. The second cast eliminate one half of the variables. For each message type
component, total delay, is a dynamic component and it hasdnd each pair of nodes we keep traffic only in one direction.
be recalculated after each rerouting. For the direction where it was near zero, we cancel it. After
It is easy to see that two extremes do not give reasonaliat we have routing and can do something about topology
results. If only delays are considered, the best network willve start with a totally interconnected network), for example
always be totally interconnected network. Removing any lirte exclude lines that carry little traffic.

V. THE COSTFUNCTION
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_— . . TABLE Il
The algorithmis applied to a simple three node network as TRAFFIC60.11 119.9

an example. Tables | and Il give results for total traffic 90,
full duplex ande = 0.0001. The column 3 is the initial MEM

_ ) ] ) _ Line | Offered | Min all | min-1-w | Max all | max-1-w
solution when all lines are included, column 4 is refinement [(12) 15.0 15.0 15.0 15.2 15.0
when opposing traffic is canceled, column 5 excludes lines g% 12'8 12'8 155"3 ig-g ig-g
v_vhere traffic is .Ies.s than 4% and the last column excludes 2.3) 10.0 10.0 100 20.0 199
lines where traffic is less than 9%. (3.1) 5.0 5.0 5.0 24.8 25.0

(3,2) 10.0 10.0 10.0 20.0 19.9
TABLE |
TRAFFIC DISTRIBUTION, TOTAL LOAD 90 TABLE IV

ROUTING FOR TRAFFIC60.11 119.9

Line | Offered | Alllin. | 1-way | Tr. 4% | Tr. 9%
1,2) 15.0 18.2 16.6 187 10.0 Mess. | Line | min all | min-1-w | max all | max-1-w
(1,3) 5.0 119 | 137 10.0 10.0 (12) | (1,2 30.0 30.0 0.4
(2,1) 15.0 182 | 16.6 18.7 10.0 (1.2) | (1,3) 0.0 29.7 29.9
(2,3) 10.0 148 | 147 16.3 25.0 (1,2) | 3,2 0.0 29.7 29.9
(3.1) 5.0 119 | 137 10.0 10.0 @3) | @2 0.0 10.0 10.0
(3.2) 10.0 148 | 147 16.3 25.0 (1,3) | (1,3 10.0 10.0 0.1
(1,3) | (2,3) 0.0 10.0 10.0
23| @,3) 0.0 19.9 20.1
23 | 2,1) 0.0 19.9 20.1
TABLE Il 2,3) | (2,3) 20.0 20.0 0.2

ROUTING, TOTAL LOAD 90

'\?iszs)' (leze) A2"3|_'5 1"1':.% Tr'lﬁ/; Tri%% It is obvious that the total traffic that is close to its extreme
(1.2) | (1.3) 75| 134 11.3 20.0 values will not permit equal traffic on all lines (provided that
12| @y| oz all loads are not equal). For the previous case the limit where
82 g% 8:2 traffic on all lines can be made equal is when the total traffic
1.2) | (3.2) 75| 134 11.3 20.0 is 75. At that point some probabilities become zero, and if we
(13) | 1.2)| 43 6.3 10.0 10.0 drop the total traffic below 75 we can not get equal traffic on
ﬁg; 8% Z:i 3.7 all lines any more.

1,3) | (2,3) 4.3 6.3 10.0 10.0 The better approach is to drop the requirement (which can
(13| 31)| o8 not be satisfied any more) that traffic on all lines must be
gg; 82 i:g equal and introduce new variables that will represent traffic
23| 13| 61| 103 8.7 on different lines. They are connected to old variables and
(23| 21| 61] 103 8.7 will be included as additional constraints. Since traffic on each
ggg g% 1?_'(3) 8.7 112] 200 line is a variable now, these variables will be made as equal as
23) | 32)| 04 possible by the MEM. The problem is that they are not the only

variables. Since we really want to make them equal, we can
give them larger weight coefficients. This works remarkably

The total offered load is for this example is 60. The shorteﬁ;‘e” and a Weight coefficient of 10 or 20 gives very nice
path isof length 1 and the longest path is of length 2. Thajg|ytions.

means that minimal total traffic is 60 and maximal total traffic
is 120 (without cycles). These two cases have unigue solutions
(for total traffic 60 everything goes along the shortest path and VII. THE GUIDED MEM
for total traffic 120 everything goes along the longest path) andFor many problems initial adjustment for the MEM appli-
we do need the maximum entropy method for that. We woug@tion requires that variables of the system be determined in
not be able to get maximum entropy solutions for these cagaieh a way that a feasible solution is obtained. This may not
since many probabilities are zero and the maximum entrob? a desirable solution for the optimization, but constraints
method can not force any probability to zero. But if we putave to be satisfied first.
60.1 or 119.9 for the total traffic, we get very reasonable It is possible to modify the MEM model and include a
results. Tables IIl i IV show how MEM successfully routegnechanism to guide the process of optimization. Once the
traffic near extreme points along shortest (columns 3 and Rgcessary constrains are satisfied, artificial variables can be
or longest (columns 5 and 6) path: introduced that will guide the optimization process in the
desirable direction.

We said before that our goal is to make traffic along all lines MEM guidance will be demonstrated on an example, similar
as equal as possible. We can keep the constraints and inclta8randeis Dice Problem.
additional equations that will force the traffic on all lines to be A die, possibly irregular, is considered. The number of spots
exactly equal. This is exactly what we wanted. The problethat shows up when the die is tossed defines a random variable
is that there is a range for total traffic where this is possibleith possible outcomes and corresponding probabilities:
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andp; = p, = pa + ps + ps. TWO new constraints that define
these new probabilities are added. The fact that new variables
are mentioned as constraints will make them participate in the
equalization process.

Pe) = [p1, 2, P3, Pa; P, 6] Care mast be taken about normalization. New probabilities

The constraint that the sum of the probabilities is 1 is alwaygr @ndps) are not independent from the old ones and the sum
present and in usual terminology not counted as an additioR4/@ll probabilities becomes 2. Considering that the sum of all
constraint. Without any (additional) constraints the expectéobabilities has to be 1 and that the sum of old probabilities
value E(X) is 3.5 and the solution for the probabilities is arionly old probabilities participate in the first constraint) is only
uniform distribution:p; = 0.167, i=1,2,...6. 0.5, the first constraint has to be redefined.

For a single constraint EX=4.4 there is one (additional) Three constraints now become:
constraint:

X =[1,2,3,4,5,6]

1p1 + 2p2 + 3p3 + 4ps + 5ps + 6ps + Op7 + Opg = 2.3

1p1 + 2po + 3p3 + 4ps + S5ps + 6ps = 4.4
. . 1 1 1 0 0 Opg — 1 Opg =0
and the MEM solution is: 1t Ap2 +Aps + Upa + Ups + Ops — 1p7 + Ops
0p1 + Op2 + Op3 + 1ps + 1ps + 1pg + Op7 — 1pg = 0

P =10.063,0.087,0.121,0.169,0.234, 0.325 i .
o = ] and the corresponding MEM solution is:

As expected, the probabilities density is shifted towards
larger outcomes since expected value shifted in that direction.
If the elementary probabilities were not the goal of equalizéa(f%) = [0.020,0.039,0.076,0.055, 0.106, 0.205, 0.135, 0.365]
tion but some coarser variables, additional constraint can be ingy \when onlyP,q is denormalized:
cluded. If, for example, the goal is to to makg = p;+p2+ps3
equal top, = ps + ps + ps, @ System of two constraints can

be used: Py = [0.040,0.078,0.152,0.109, 0.211, 0.409]
This solution represents smooth extrapolation of the pre-
1p1 + 2pa + 3ps + 4ps + 5ps + 6pg = 4.4 vious case. All constraints are satisfied. Expected value is
4.6. However,p; and pg are not equal since that was not
1p1 + 1ps + 1ps — 1ps — 1ps — 1pg = 0 the requirement any more. These variables were mentioned in

the system of constraints so they participate in the process of
In this case it is possible to have a solution that will satisfyqualization, but only to some extent. In this case (after denor-
both constraints: malization),p; = 0.270 andps = 0.730. This is far from being
equal, the ratigs /p7 is 2.7. We can make them closer to being
Plg) = [0.004,0.042, 0.454,0.004, 0.042, 0.454] (22) equ_al_by.forcing them to_ contribute more ;ignificantly in .th_e
optimization process. This can be accomplished by redefining
The problem with this approach is that it limited to casegiem in such a way that the larger mass of the probability is
when the guidance goal (in this case the total equalization g§ncentrated in them. If the constraimpis= p; + p» + p3 and
p. andp,) is possible. However, the main advantage of thg, = p, + ps + ps are replaced withg = 9p; +9ps + 9p3 and
MEM method is its ability to push towards the guidance gogl, = 9p,+9p5+9ps only the 10% of the probability mass will
even when exact goal satisfaction is not possible. remain in the old probabilities and 90% will be concentrated in
This can be illustrated on the previous example, but withe new probabilities. This will make new probabilities more
changed requirement th#t(X) = 4.6. It is easy to see that significant in the equalization process, but the first constraint
the constraint has to be redefined to reflect the fact that old probabilities,
. that define it, now contribute 10 times less. The new set of
PLtP2tPs=patPs+Po constraint is:
can not be satisfied. The maximum value fB(X) is

reached when probabilities density is pushed toward higher
values: Ip1 + 2p2 + 3ps + 4ps + 5ps + 6ps + Op7 + Ops = 0.46

9p1 + 9p2 + 9ps + Ops + Ops + Ops — 1p7 + Ops = 0
Py =10,0,0.5,0,0,0.5]
The value for E(X) is in that case equal to 4.5. For any 0p1 + O0p2 + Op3 + 9ps + 9ps + 9ps + Op7 — 1pg = 0
higher value ofE(X') exact equalization (which is the second
constraint) is not possible.
To make the sumg; + ps + p3 andp, + p5 + pg as equal as
possible, new variables are introducegl:= p, = p1+p2+p3  Prg) = [0.001,0.007,0.031,0.002, 0.010,0.049, 0.348, 0.552]
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or, when only P4 is denormalized:

Pg) = [0.014,0.066,0.307, 0.022,0.104, 0.487] Mess. | Line | Old | Eq. | Var. | Weight 4
(12)| @.2)| 166 | 150 | 16.1 155

it i (1,2) | (1,3) | 13.4 | 150 | 13.9 14.5

. New probabll|t!e5p7 and pg are now closer to being equal 02| G2 | 134 | 130 | 139 14s
We can push this process further in that direction by making 13| @3)| 37| 50| 40 4.4
old probabilities contain only 2% of the probability mass, %’? (i’g) 12-2 lg-g lg-g 158-3
yvhich is equivalent of making new probabiities 50 times more 22:33 Ezjlg 103 | 100 | 101 100
important. (23)| 23)| 97| 100 99 9.9

The new set of constraints is now:

1p1 + 2p2 + 3ps + 4psa + Sps + 6ps + Op7 + Opg = 0.092
49p1 + 49p2 + 49p3 + Op4 + Ops 4+ Opg — 1p7 + Ops = 0

Op1 + Ops + Ops + 49p4 + 49ps5 + 49ps + Op7r — 1ps =0

The corresponding MEM solution is;

Pg) = [0.000,0.000, 0.009,0.000, 0.000, 0.010, 0.444, 0.536]

or, when onlyP is denormalized:

Py = [0.001,0.019,0.434,0.001, 0.023, 0.523]

New probabilitiesp; and pg are now even closer to being

equal since ratigs/p; improved to 1.2.

For significance of new probabilities equal to 100, 2.3)
the corresponding probabilities aré ) '

= [0.000000,

TABLE VI
ROUTING, LINES AS VARIABLES, TOT 90

messages on some lines drops to zero. Tables VII and VIl
showwhat the second method can do in that case. The third
column gives old results, the column 4 results of modified
algorithm when there is a constraint that traffic on all lines
be equal, column 5 when lines are introduced as variables,
column 6 when these lines variables have weight 4, column
7 with weight 9 and the last column with weight 19. If the
total traffic drops below 75, the fourth column can not be
calculated any more, but the remaining columns continue to
smoothly abandon the uniform distribution.

TABLE VI
DIFFERENT WEIGHT COEFFICIENTS

Line | Offer | Old Eq. | Wght4 | Wght9 | Wght19
(1,2) ] 15.0] 16.0 | 125 13.9 131 12.7
1,3) 50| 9.1 125 11.0 11.7 12.3
(21) | 15.0| 16.0 | 125 13.9 13.1 12.7

0.000038, 0.004603, 0.000000, 0.000044, 0.005314, 0.459509,
0.530491], P = [0.0000, 0.0038, 0.4603, 0.0000, 0.0044,
0.5314] and ratigs/py; = 1.15.

The process that is described shows that it is possible
to adjust MEM for some constrained optimization problem
and then guide it in the desired direction, but there is no
universal way how to do it, each problem has to be investigated
separately.

VIII. NETWORK EXAMPLE FOR GUIDED MEM

Tables V and VI represent the same example as before,
total traffic 90, but with constraints where traffic on all lines
is made equal, lines are introduced as variables, and lines are
introduced as variables with weight 4.

TABLE V
LINES AS VARIABLES, TOTAL TRAFFIC 90

100 | 12.4 | 125| 12.7| 126 125

(31| 50| 91| 125| 110| 117 12.3

(32) | 100 12.4| 125| 127| 126 125
TABLE VIII

ROUTING FOR DIFFERENT WEIGHT COEFFICIENTS

Mess. | Line | OIld Eg. | Wght4 | Wght9 | Wght19
1,2) | (1,2) | 236 | 19.9 20.3 18.4 16.0
12)| (1,3)| 65| 10.0 9.2 10.4 11.8
1,2) | 32)| 6.5 | 10.0 9.1 10.1 11.0
13)] 12)| 34| 01 2.2 21 3.0
a3)] 13)| 66| 99 7.4 6.9 5.3
13)] 23)| 34| 01 2.2 2.2 3.3
23)] 1,3) | 51| 50 5.4 6.1 7.4
23)] (21)| 51| 50 5.3 5.7 6.3
(23) | (2,3) | 149 | 149 14.1 13.0 10.7

Line | Offered | OId Eq. | Var. | Weight 4
1,2 150 | 166 | 15.0 | 16.1 15.6
1,3) 5.0 | 13.7 | 15.0 | 14.0 14.4
(2,1) 15.0 | 16.6 | 15.0 | 16.1 15.6
(2,3) 10.0 | 14.7 | 15.0 | 14.9 15.0
3,1) 5.0 | 13.7 | 15.0 | 14.0 14.4
3,2) 10.0 | 14.7 | 15.0 | 14.9 15.0

IX. CONCLUSION

The netvork design problem is suitable for the maximum
entropy method application since the routing problem is an
underdetermined one. Also, since it is intuitively clear that
an optimal network should not have overloaded or underuti-
lized links, the maximum entropy constraint gives a starting
topology and routing with smoothly distributed traffic that
is robust to changes in cost function. Such optimization is

The limit where we can force equal traffic on all lines isiseful in ad-hoc and wireless networks where cost function
whentotal traffic is 75 for this case. Then the traffic for somend consequently, topology and routing have often to be
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quickly adjustedAn algorithm presented here has a number @0] Awan I, Al-Begain K: An analytical study of quality of service pro-
automatic features that, step by step improve solution, but also visioning for multi service mobile IP networks using adaptive buffer

b f h b di df if managementl 1th International Conference on Analytical and Stochas-
a number of parameters that can be adjusted for specific cases ;. Modeling Techniques and ApplicatiqrZ004, Proceedings, pp. 166-

to help the optimization process. Further research can include 172

quantitative analysis of robustness of this MEM solutiofll Watcharasitthiwat K, Wardkein P: Reliability optimization of topology
ideri dif listi " . communication network design using an improved ant colony optimiza-
considering diiferent realistic cost functions. tion, Computers & Electrical Engineerinyol. 35, Issue 5, Sep. 2009,

pp. 730-747
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