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Abstract—The nonlinear eigenvalue problem of the differential equa-
tion

(
|x′|p−2 x′

)′
+ (λ+ c(t)) |x|p−2 x = 0, p > 1, with respect to

the periodic boundary conditions: x(0) = x(T ), x′(0) = x′(T ), or to
the antiperiodic boundary conditions: x(0) = −x(T ), x′(0) = −x′(T )
are considered. Various results on the set of eigenvalues concerning both
problems are presented. Some estimates are given for the periodic and
antiperiodic eigenvalues.
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I. INTRODUCTION

A Hill’s equation is a differential equation of the type

x′′ + q(t) x = 0,

where q(t) is an integrable, real function of period p. This type of
equation was first investigated in connection with the theory of lunar
motion by G. W. Hill [9]. It is also well-known in the quantum
theory of metals and semi-conductiors (see e.g., [4], [17] and [18])
or in optics when ultrashort optical pulses are examined (see e.g.,
[12], [15] and [16]). The value of the period of the solution plays
an important role in the discussion of periodic solutions. A specific
question is the case of solutions of period p and 2p (see [5], [7],
[13]).

We consider the half-linear version of Hill’s differential equation

x′′
∣∣x′∣∣p−2

+ q(t) x |x|p−2 = 0, p > 1. (1)

It is called half-linear differential equation by I. Bihari [2]. Its solution
set preserves the half of the properties of the linear differential
equation since it is homogeneous, but not additive. In [8], Á. Elbert
established the existence and uniqueness of solutions to the initial
value problem for differential equation equation of type (1).

The aim of this paper is to examine the periodic solutions of
equations (1) with periodic or antiperiodic boundary conditions

x(0) = x(T ) and x′(0) = x′(T ), (2)

or

x(0) = −x(T ) and x′(0) = −x′(T ), (3)

respectively, when q(t) = λ + c(t), λ ∈ R, and the potential c,
t ∈ (0, T ) is periodic. The value λ is called an eigenvalue and x 6= 0
an eigenfunction if the pair (λ, x) satisfies (1)-(2) or (1)-(3). We
investigate the asymptotic behavior of large eigenvalues.

II. PRELIMINARIES

In this section we recall some known results and techniques.

A. Generalized sine function

For the special case, q(t) ≡ 1, the solution of equation

x′′
∣∣x′∣∣p−2

+ x |x|p−2 = 0 (4)

with the initial conditions x(0) = 0, x′(0) = 1, called the generalized
sine function

x = Sp(t), t ∈ (−∞,+∞) (5)

was introduced by Á. Elbert in [8]. For t ∈ [0, π̂/2] , where

π̂/2 =
π

p
/ sin

π

p
,

function Sp satisfies

t =

Sp∫
0

dx
p
√

1− xp
. (6)

Formula (6) defines uniquely function Sp on [0, π̂/2] with
Sp (π̂/2) = 1.

We extend Sp to all R (and still denote this extension by Sp) as
a 2π̂ periodic function:

Sp(t) = Sp(π̂ − t) for t ∈ [π̂/2, π̂] ,

Sp(t) = −Sp(−t) for t ∈ [−π̂, 0] , (7)

Sp(t) = Sp(t+ 2π̂) for t ∈ R.

Therefore function Sp has the following properties:
(i) Sp(t+ π̂) = −Sp(t) for all t and Sp(t) is an
odd function having zeros at t = jπ̂, j = Z,
(ii) S′p(t) has zeros only at t = 1

2
π̂ + jπ̂, j = Z.

(iii) From (4) by integration we have the general-
ized Pythagorean relation

|Sp(t)|p +
∣∣S′p(t)∣∣p = 1 for all t ∈ R. (8)

For p = 2 we have that

S2(t) = sin t,

π̂ = π

and equation (8) is reduced to the usual Pythagorean relation

sin2 t+ cos2 t = 1.

B. Generalized Prüfer transformation

It is convenient to introduce the generalized Prüfer transformation
for the examination of the solutions of the quasilinear differential
equation (1) using the above defined generalized trigonometric func-
tion.

For x(t, λ) of (1) the generalized polar functions ϕ(t, λ) and
ρ(t, λ) are defined by
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x(t, λ) = ρ(t, λ) Sp (ϕ(t, λ)) ,

x′(t, λ) = ρ(t, λ) S′p (ϕ(t, λ)) ,

where

ρ(t, λ) =
[
|x(t, λ)|p +

∣∣x′(t, λ)
∣∣p]1/p

moreover ϕ(t, λ) and ρ(t, λ) are continuously differentiable functions
of t. Then the pair

(ϕ; ρ) = (ϕ(t, λ); ρ(t, λ))

is a solution of the system of differential equations

ϕ′ =
∣∣S′p(ϕ)

∣∣p +
q(t)

p− 1
|Sp(ϕ)|p ,

ρ′ = ρ

(
1− q(t)

p− 1

)
S′p(ϕ) |Sp(ϕ)|p−2 Sp(ϕ).

III. PERIODIC AND ANTIPERIODIC EIGENVALUE PROBLEMS

We consider differential equation (1) for q(t) = λ+ c(t) :(∣∣x′∣∣p−2
x′
)′

+ (λ+ c(t)) |x|p−2 x = 0 (9)

in (0, T ), where T > 0, p > 1 is real number, c(t) is a positive,
continuous and periodic function on (0, T ). The boundary conditions
are

x(0) = x(T ), x′(0) = x′(T ), (P)

called periodic boundaryconditions, or

x(0) = −x(T ), x′(0) = −x′(T ) (AP)

called antiperiodic conditions.
Let x = x(t) be a solution of (9) with (P). We extend x as a

periodic function on R such as

x(t+ T ) = x(t) for any t ∈ R,

then x is a T-periodic solution of (9) on the whole of R.
Let x̃ = x̃(t), t ∈ [0, T ] be a solution of (9) with (AP) and extend

x as follows:

x̃(t) = −x̃(t− T ) for t ∈ (T, 2T ),

then
x̃(t) = x̃(t+ 2T ) for any t ∈ R.

Therefore x̃ is a 2T -periodic solution of (9) on the whole R.
For the functional settings we define W 1,p

T as a function space of
all continuous functions y = y(t), t ∈ [0, T ] , such that

‖y‖ =

 T∫
0

[∣∣y′∣∣p + c(t) |y|p
]
dt

1/p

<∞

and y satisfies (P).
Let us define W̃ 1,p

T as a function space of all continuous functions
y = y(t), t ∈ [0, T ] such that ‖y‖ <∞ and y satisfies (AP).

Both W 1,p
T and W̃ 1,p

T are Banach spaces (Sobolev spaces of T -
periodic and T -antiperiodic functions) and ‖.‖ defines a norm in both
spaces.

We can summarize the following properties:

∀x ∈ W 1,p
T ⇒ |x| ∈W 1,p

T ,

∀x ∈ W̃ 1,p
T ⇒ |x| /∈ W̃ 1,p

T ,

∀x ∈ W̃ 1,p
T ⇒ |x| ∈W 1,p

T ,

moreover, we have that

W 1,p
T ∩ W̃ 1,p

T ={
x : x(0) = x(T ) = x′(0) = x′(T ) = 0

}
.

The formulation of the eigenvalue problem of (9)-(P) in a weak
sense is the following:
Definition 1 Function x ∈W 1,p

T is called the weak solution of (9)-(P)
if for all y ∈W 1,p

T

T∫
0

∣∣x′∣∣p−2
x′y′dt− (λ+ c(t))

T∫
0

|x|p−2 xydt = 0

is satisfied.
Analogously, we have

Definition 2 The weak solution of (9)-(AP) is a function x̃ ∈ W̃ 1,p
T

if

T∫
0

∣∣x̃′∣∣p−2
x̃′y′dt− (λ+ c(t))

T∫
0

|x̃|p−2 x̃ydt = 0

holds for all y ∈ W̃ 1,p
T .

The regularity of the weak solution can be considered by ,,stan-
dard” regularity argument given by M. Otani [14]. If x is a weak
solution of (9)-(P) then x ∈ C1 [0, T ] . We have the same property
for x̃. Moreover, if x is a weak solution of (9)-(P) then x ∈ C2 (0, T )
with exception of the points t where x′(t) = 0 for p > 2. (The same
holds for x̃.)

We note that the initial value problem of (9) under initial conditions

x(t0) = x0, x
′(t0) = x1

admits unique solution x ∈ C1(R), and x ∈ C2 (R) with exception
of the points where x′ = 0 for p > 2 (see [6]).

For the variational characterization of the eigenvalues we set

‖y‖p =

 T∫
0

|y|p dt

1/p

for y ∈W 1,p
T ∪ W̃ 1,p

T , and we use the notation

S :=
{
y ∈W 1,p

T : ‖y‖p = 1
}
.

For a closed and symmetric set A ⊂ S we define the Krasnoselski
genus of A as follows:

γ(A) := inf {m ∈ N :

∃ continuous and odd mapping A into Rm \ {0}},

and

γ(A) :=∞ if such m does not exist.

Let us define

Fk := {A ⊂ S : A = −A, γ(A) = k} , k ∈ N.
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We denote by S̃, Ã, F̃k the same sets if W 1,p
T is replaced by W̃ 1,p

T .
The eigenvalues of (9)-(P) (or (9)-(AP)) are those values of λ ∈ R
for which there exists non-zero solution of (9)-(P) (or (9)-(AP)).
Definition 3. Let us denote by λk and λ̃k the eigenvalues of (9)-(P)
and (9)-(AP). Then we have

λk := min
A∈Fk+1

max
x∈A
‖x‖p for k ∈ {0} ∪N,

and

λ̃k := min
Ã∈F̃k+1

max
x∈Ã
‖x‖p for k ∈ N.

We consider the eigenvalues of (9) with respect to the periodic
(P) or antiperiodic (AP) boundary conditions. When no potentials
are present, c(t) ≡ 0, the periodic and antiperiodic eigenvalues of
(9) are known because (9) is integrable. Thus the eigenvalue problem

(∣∣x′∣∣p−2
x′
)′

+ λ |x|p−2 x = 0,

x(0) = x(π̂) = 0

has a solution

x = C Sp
(
p
√
λt
)
, for C ∈ R,

which is a periodic solution. In order to obtain nonvanishing solutions
it is necessary that

p
√
λ = n, n = 1, 2, 3, ...,

and the eigenfunctions are given by

xn = Cn S (n t) .

If p = 2, c(t) is 2π periodic and c ∈ L1(0, 2π) (this is the
case T = 2π) then the classical results are known (see e.g., [13]).
However, when some potentials are present in (9), c(t) 6= 0, the
periodic and antiperiodic eigenvalues are studied by M. Zhang [19].

It is known that there exist two sequences
{
λk : (k ∈ Z+)

}
and{

λ̃k : (k ∈ N)
}

of the reals such that

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6 < . . . ,

λ̃1 ≤ λ̃2 < λ̃3 ≤ λ̃4 < λ̃5 ≤ λ̃6 < . . .

and both sequences
{
λk : (k ∈ Z+)

}
and

{
λ̃k : (k ∈ N)

}
tend to

+∞ as k → +∞.
It is also known that the number of nodes of xk (or of x̃k) in

[0, T ) is finite. Additionally we can give the number of nodes in the
two cases. Let xk be the eigenfunction associated with λk ( k =
0, 1, 2, . . .). Then the number of nodes of xk in [0, T ) for k = 2n
is equal to 2n (n = 0, 1, 2, . . .) and for k = 2n − 1 is equal to 2n
(n = 0, 1, 2, . . .).

The smallest eigenvalue λ0 is simple and isolated. (the proof is
similar as in [1]).

Let x̃k be the eigenfunction associated with λ̃k (k = 1, 2, . . .).
Then the number of nodes of x̃k in [0, T ) is 2n− 1 for k = 2n− 1
( n = 1, 2, . . .) and 2n − 1 also for k = 2n ( n = 1, 2, . . .). Here
the smallest eigenvalue λ̃1 is not simple in general. It is enough to
take the linear case (p = 2) with c(t) ≡ const. when λ̃1 = λ̃2.

IV. ASYMPTOTIC RESULTS

Henceforth we consider differential equation (9) for sufficiently
large value of λ such that

λ+ c(t) > 0. (10)

Without loss of generality we assume that c(t) is integrable and

π̂∫
0

c(t) dt = 0.

Let c in (9) be a periodic function of t with period π̂ and let c(t) be
satisfy

[λ+ c(t)]1+1/p >
1

p

∣∣c′(t)∣∣ , for all t. (11)

To emphasize the dependence solution of (9) on λ we shall write
x(t, λ).

First we construct a solution y of (9) such that

x(t, λ) = A(t) Sp (ϕ(t)) (12)

and
x′(t, λ) = p

√
λ+ c(t) A(t, λ) S′p (ϕ(t, λ)) , (13)

where ϕ(t) and A(t) are continuously differentiable on [0,∞) and
determined by the differential equations

ϕ′(t, λ) = p
√
λ+ c(t) +

1

p

c′(t)

λ+ c(t)
G(ϕ). (14)

A′(t, λ)

A(t, λ)
= −1

p

c′(t)

λ+ c(t)
|Sp (ϕ(t, λ))|p , (15)

with notation

G(ϕ) = Sp (ϕ)
∣∣S′p (ϕ)

∣∣p−2
S′p (ϕ) .

The conditions on x(0) and x′(0) determine the values of ϕ(0)
and A(0).

Inequality (11) guarantees that ϕ(t, λ) is monotonically increasing
function of t. From (7) it follows that if ϕ(t) and A(t) provide a
solution x(t, λ) then ϕ(t) + π̂ and A(t) also provide as a solution
−x(t, λ). All the solutions can be obtained on the range of values
ϕ(0) where the range is of length π̂. We get from (15) that function

A(t, λ) = A(0, λ) expα(t),

with

α(t) =

−1

p

t∫
0

c′(τ)

λ+ c(τ)
|Sp (ϕ(τ, λ))|p dτ


is monotone, non-increasing and tends to a limit A(∞, λ) as t→∞.
If

∞∫
0

c′(τ)

λ+ c(τ)
|Sp (ϕ(τ, λ))|p dτ =∞

then A(∞, λ) = 0 and

lim
t→∞

x(t, λ) = 0.

If

∞∫
0

c′(τ)

λ+ c(τ)
|Sp (ϕ(τ, λ))|p dτ <∞

then A(∞, λ) > 0 and solution x(t, λ) oscillates, where its amplitude
tends to a positive value.
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If x(t, λ) is periodic with period π̂, then we get from (12) and
(13) with conditions

x(π̂, λ) = x(0, λ), (16)

x′(π̂, λ) = x′(0, λ)

that

A(π̂, λ) = A(0), (17)

ϕ(π̂, λ)− ϕ(0, λ) = 2k π̂,

where k is a positive integer.
If x(t, λ̃) is antiperiodic, then for the solution we have conditions

x(π̂, λ̃) = −x(0, λ̃), (18)

x′(π̂, λ̃) = −x′(0, λ̃),

hence

A(π̂, λ̃) = A(0, λ̃), (19)

ϕ(π̂, λ̃)− ϕ(0, λ̃) = (2k − 1) π̂,

where k is a positive integer.
Problem (9) with

x(π̂, λ) = x(0, λ), x′(π̂, λ) = x′(0, λ)

has countable infinity of values

λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk ≤ ...

accumulating at ∞, similarly, for problem (9) with

x(π̂, λ̃) = −x(0, λ̃), x′(π̂, λ̃) = −x′(0, λ̃)

has countable infinity of values

λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃k ≤ ...

accumulating at ∞ and for each nonnegative integer

λ = λk with ϕ(π̂, λk)− ϕ(0, λk) = 2k π̂,

λ̃ = λ̃k with ϕ(π̂, λ̃k)− ϕ(0, λ̃k) = (2k − 1) π̂

for the proof see [19].
Now we gain more information regarding the distribution of the

parameter λ. We give estimates for large eigenvalues:
Theorem 4 Let c(t), c′(t) and c′′(t) be bounded periodic functions
with period π̂. Then for λk and λ̃k concerning the solutions of (9)-
(16) and (9)-(18), respectively,

p
√
λ2k − 2k = O

(
1
kν

)
,

p
√
λ2k−1 − 2k = O

(
1
kν

)
,

p
√
λ̃2k − (2k − 1) = O

(
1
kν

)
,

p

√
λ̃2k−1 − (2k − 1) = O

(
1
kν

) (20)

hold for large values of k with

ν =

{
2p− 1, if 1 < p < 2,
p+ 1, if p ≥ 2.

Proof: For t0 = 0 we get a Volterra–type integral equation for ϕ

ϕ(t, λ) = ϕ(0, λ) +

t∫
0

p
√
λ+ c(τ) dτ (21)

+
1

p

t∫
0

c′(τ)

λ+ c(τ)
G(ϕ) dτ.

Since c′(t) and c(t) are bounded, and if λ is large enough, then

1

p

∣∣∣∣∣∣
t∫
0

c′(τ)

λ+ c(τ)
G(ϕ) dτ

∣∣∣∣∣∣ < K

λ

K = const., and

ϕ(t, λ) = ϕ(0, λ) +

t∫
0

p
√
λ+ c(τ) dτ +O

(
1

λ

)
,

As for sufficiently large λ

Sp (ϕ) = Sp

(
ϕ(0, λ) +

t∫
0

p
√
λ+ c(τ) dτ

)
+O

(
1
λ

)
,

S′p (ϕ) = S′p

(
ϕ(0, λ) +

t∫
0

p
√
λ+ c(τ) dτ

)
+O

(
1
λ

)
,

(22)

so that

G (ϕ) = G

ϕ(0, λ) +

t∫
0

p
√
λ+ c(τ) dτ

+O

(
1

λ

)
. (23)

By an iteration we find that

ϕ(t, λ) = ϕ(0, λ) +

t∫
0

p
√
λ+ c(τ) dτ

+
1

p

t∫
0

c′(τ)

λ+ c(τ)
G

ϕ(0, λ) +

τ∫
0

p
√
λ+ c(s) ds

 dτ

+O

(
1

λ2

)
.

For π̂ periodic solution we get

x(0) = x(π̂), x′(0) = x′(π̂)

A(π̂, λ) = A(0), ϕ(π̂, λ)− ϕ(0, λ) = 2k π̂,

2k π̂ =

π̂∫
0

p
√
λk + c(τ) dτ (24)

+
1

p

π̂∫
0

c′(τ)

λk + c(τ)
G (ϕ(τ, λk)) dτ,

0 = −1

p

π̂∫
0

c′(τ)

λk + c(τ)
|Sp (ϕ(τ, λk))|p dτ. (25)

The values of ϕ(0, λk) and λk are unknown. As ϕ(t, λk) is deter-
mined from (21) then ϕ(0, λk) and λk can be determined from (24)
and (25) for every k. Applying (22) and (23) we obtain estimates on
λk and λ̃k.
Theorem 5. Let c(t) be periodic with period π̂ and let M be a
uniform bound for |c| , |c′| , |c′′| , and |c′′′|. Then the eigenvalues λ
and λ̃ belonging to the problem (9)-(P) and (9)-(AP) when p 6= 3
satisfy the inequalities

p
√
λ2k > 2k, p

√
λ2k−1 > 2k,

p
√
λ̃2k > (2k − 1),

p

√
λ̃2k−1 > (2k − 1)

provided that they are greater than constant Λ defined by

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 1, Volume 2, 2007 36



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES 5

Λ = max

(
M +

(
1 +

M

p2

)p
,

M +

(
2p

p− 1
· C1 + C2M + C3M

2

M

) p
3−p
)
,

where C1 = C1(p), C2 = C2(p), C3 = C3(p).
For the proof we refer [3].

Remark. The bound obtained for the Hill’s equation (equation (9)
with p = 2) by H. Hochstadt [10] is better than our bound. The reason
is that in the linear case we are able to use trigonometric formulas
but if p 6= 2 then these formulas do not exist for the generalized
trigonometric functions.
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