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Abstract - A numerical solution for temperature profile in 

three-dimensional heat conduction inside multi-

connected geometry is presented. The special 

discretization has been done by Galerkin Finite Element 

Method (GFEM). Four applications are presented to 

demonstrate the efficiency of the proposed method. Of 

these, the first two use a doubly connected domain, and 

the other, a multi-connected domain, and the first and the 

third used to validate the results in their respective fields 

through the analytical solution. To analyze the results, 

the norms of the errors and their graphs are studied. 
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I . INTRODUCTION 

Since the early '50s, many researchers have used 

the Finite Element Method (FEM) in many 

applications, detaching the pioneering papers of 

[1,3], which made use of the method in structural 

analysis. Some decades later [4,7] successfully 

used this formulation in problems involving heat 

conduction, since that, when applied to problems 

governed by self-adjoint elliptic or parabolic partial 

differential equations, the Galerkin Finite Element 

Method (GFEM) leads to symmetric stiffness 

matrices. 
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Recently, several authors have presented 

applications of the finite element method for two 

and tridimensional problems, among them [8,11].  

Also noteworthy is the two-dimensional study of 

heat conduction in multiply connected domains 

carried by [10], extended to three-dimensional case 

in this work that presents a numerical solution to 

the heat conduction in solids with doubly connected 

domains using the GFEM. 

 It is important argue that the main objective this 

paper is the application of the proposed method in 

tri-dimensional domain multi-connected, once to 

simple domain, like in cubes [12] it was already 

done. Despite the domains are multi-connected, the 

meshes chosen to this work are uniform, and due to 

the paper aiming is to allow other authors to 

compare their results. 

In order to analyze the accuracy of the 

methodology adopted, it is used the norm L2, which 

represent the average error in all domain, and the 

norm L∞ , that represents the highest error in all 

domain, in analyzes of the application 1 and 3, 

which already have the analytical solution 

proposed.   

II. MODEL EQUATION 

Considering the tridimensional heat conduction 

equation in closed limited solid domains designed 

as 3ℜ⊂Ω , the model equation has the following 

form: 
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where is a function dependable of spatial 

coordinates, kx, ky e kz being the thermal 

conductivity in each direction, here considered 
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constant. Few after, it is presented a brief of spatial 

discretization, more details are found in [12]. 

III. SPATIAL DISCRETIZATION 

Here, the GFEM is applied for discretization of the 

integral equations. In this method an approximation 

of unknown variable is a function T̂  that when 

substituted in the Eq. (1) produces a null residual. 

So, the approximation form is: 
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where nodesN  is the number of nodes of each 

element, jN  are the function of interpolation and 

e
jT̂  the nodal values of T in the element. The 

residue is determined by the replacement of the 

approximation T̂  in Eq. (1), and is defined as:  
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The solution is found by forcing the pondered 

residual to be null. In other words, it must be found 

as a function of ee VT ∈ˆ , )(2 Ω∈CV e , such as:  
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In the GFEM, the weight function is the same 

interpolation function, i.e. , i
e
i Nv = , 

nodesNi ,...,2,1= . After integration of Eq. (4) the 

result is an algebric system of equations written in 

matricial form as follow: 
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in which the matrix coefficients are, 
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with nodesNji ,...,2,1, = , aT  the temperature of the 

environment, h the heat transference coefficient,  q 

the flux of heat in the contour and qΓ  the contour 

where none temperature is described. 

IV. NUMERICAL APPLICATIONS 

The system of algebric equations represent by Eq. 

(5) was solved by the Gauss-Seidel method and 

stop criteria with maximum error Emax≤10-10
. The 

computational code was developed in FORTRAN 

language and the meshes were refined until the 

limit of the computer´s memory capacity. Linear 

hexahedra with eight nodes were used, with h 

representing the size of the element (cubic 

element). 

  The L2 norm of the error was defined like in [13]: 
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number of nodes in the mesh and 

|| (an)(num) ii TTe
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−= , where T(num) is the result from 

the numerical solution and T(an) is the result form 

the analytical solution, respectively, and the L∞ 

norm, defined by ||e||∞ = |T(num) - T(an)|, which is the 

maximum error in the entire domain. 

In the following, two numerical applications are 

presented, using the same domain (Fig. 1). At the 

first, it used an analytical solution to validate the 

computational code at this type of domain. In the 

two last applications is considered a domain multi-

connected (Fig. 5), while in the third an analytical 

solution is utilized to validate the computational 

code. 

 

Application 1  

In this application is adopted an analytical 

solution for the Eq. (1) with kx, ky, kz and B in an 

unity manner, as follow; 

 

zyxzyxT sensensen),,( ++= , 

x
x

zyxT
cos

),,(
=

∂
∂

, y
y

zyxT
cos

),,(
=

∂
∂

, 

z
z

zyxT
cos

),,(
=

∂
∂

. 

 

   

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 249



 
Fig. 1 Cubic doubly connected domain. 

 

and the boundary conditions of first type, defined 

by the own analytical solution. 

Here, the precision of GFEM is analyzed 

towards Norms L2 and L∞, which are shown in 

the Tables 1 and 4, considering h = ∆x = ∆y = 
∆z, being h = ∆x = ∆y = ∆z the edges in the three 

directions and Nelem the number of elements in 

the mesh. Figure 2 shows the mesh in the plane 

xz and y = 0.1, with h = 1/20, being the mesh 

generated internally in the computational code.  

 

 
Fig. 2 Mesh in the plane xz with y = 0.1,             

h = 1/20. 

 

In Table 1 is verified with the mesh slightly 

refined, h = 1/10 that the GFEM already reaches, 

in the two norms proposed, an accuracy of order 

10
-5
. Applying several refinements in the mesh, 

reaching till h = 1/60, is observed that the 

refinement is not yet necessary, once the 

accuracy advantage is too small to hexahedron 

with 8 nodes. On the other hand, it is remarkable 

by the Table 3 that the refinement of the mesh 

for hexahedron with 27 nodes starts to become 

harmful to the method accuracy. 

 

Table 1. Norm of error in the solution of T(x,y,z), 

application 1. 

8 nodes 

NNost h Nelem Norm L2 Norm L∞∞∞∞  

1287 1/10 910 1.59E-05 4.87E-05 

8736 1/20 7280 4.33E-06 1.22E-05 

27807 1/30 24570 2.03E-06 5.65E-06 

63960 1/40 58240 1.24E-06 3.48E-06 

122655 1/50 113750 9.22E-07 2.63E-06 

209352 1/60 196560 7.93E-07 2.34E-06 

      

    A special contribution given by this paper is 

the analyzes of Norms L2 and L∞ in terms of 

error of numerical solution of the initials 

derivatives of T (Tables 2 and 4). This result is of 

extreme importance in heat transfer problems, 

making possible the analyses of the heat flux in 

any point within the domain. In GFEM, the 

proceeding used is similar of the approximation 

presented in Eq. (2):  

 

Table 2. Norm of error in the solution of  

Tx(x,y,z) = Ty(x,y,z) = Tz(x,y,z), aplicação 1. 

8 nodes 

NNost h Nelem Norm L2  Norm L∞∞∞∞  

1287 1/10 910 2.57E-02 4.14E-02 

8736 1/20 7280 1.31E-02 2.08E-02 

27807 1/30 24570 8.80E-03 1.39E-02 

63960 1/40 58240 6.62E-03 1.04E-02 

122655 1/50 113750 5.31E-03 8.39E-03 

209352 1/60 196560 4.43E-03 7.00E-03 

 

∑
=

∂

∂
=

∂
∂

≈
∂
∂ Nnodes

i

e
i

k

i

k

e

k

T
x

N

x

T

x

T

1

ˆ
ˆ

, 

 

where k = 1, 2 ou 3, being x1 = x, x2 = y e x3 = z. 

In the Table 2, where the hexahedron with 

eight nodes is utilized, it presents that the 

previous solution, proposed to the calculus of the 

derivatives of T obtains results with 3 to 4 orders 

of accuracy, are smaller than presented in the 

Table 1, Norms of T. The same happens with the 

results found in the Table 4, which makes use of 

hexahedron with 27 nodes, where also, according 

to the results in the Table 3, the refinement is 

harmful to the accuracy of the method. 
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Table 3. Norm of error in the solution of T(x,y,z), 

application 1. 

27 nodes 

NNost h Nelem Norm L2 Norm L∞∞∞∞  

8736 1/10 910 4.80E-07 3.53E-06 

63960 1/20 7280 1.49E-06 1.66E-05 

209352 1/30 24570 2.07E-07 1.69E-06 

 

Table 4. Norm of error in the solution of Tx(x,y,z) 

= Ty(x,y,z) = Tz(x,y,z), application 1. 

27 nodes 

NNost h Nelem Norm L2  Norm L∞∞∞∞  

8736 1/10 910 5.76E-04 9.03E-04 

63960 1/20 7280 2.17E-04 2.13E-03 

209352 1/30 24570 7.24E-05 3.78E-04 

 

Application 2  

In this case, in Eq. (1) are considered kx, ky and kz 

unities, B = 0 and the following boundary 

condition: 

 

- plane xz with y = 0 or y = 1 ⇒ ∂T/∂y = 0 
(isolated) 

- plane yz with x = 0 or x = 1 ⇒ T = 5 

- plane xy with z = 0 or z = 1 ⇒ T = 5 

- plane yz (hole) with x = 0.2 or x = 0.5 ⇒ T = 0 

- plane xy (hole) with z = 0.2 or z = 0.5 ⇒ T = 0 

 

The Figures 3 and 4 demonstrate what was 

expected physically, it means, a more shrink 

distribution of temperature in the region of x and 

z = 0 without oscillations and more spaced in the 

region of x and z = 1 (Fig. 3) and a line of flux 

null in a region on the left from the center of 

domain (Fig. 4), due to influence of the hole, 

being at left from the domain. 

    In the applications 3 and 4, the domain is 

multi-connected, presenting two holes placed in 

the plane xz, as seen in the Figure. 5. 

 

Application 3 

     We analyzed here a problem of heat 

transferring under a domain multi-connected. In 

the application 1, the cubic domain presented one 

hole, (Fig. 1); while here, it is composed by two 

holes. These are considered kx, ky and kz unities 

and B null.  

    To validate the computational code it is used 

the following analytical solution [14,15], 

 

 

 

 

 
Fig. 3 Profile of T(x,y,z) in the plane xz, with y = 0.1 and h = 1/20, application 2. 
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Fig. 4 Profile of Tx(x,y,z) in the plane xz, with  y = 0.1 and h = 1/20, application 2. 
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The boundary conditions were chosen to 

satisfy the analytical solution proposed at this 

problem. 

To the boundary conditions proposed at this 

application (analytical solution), on contrary of 

the application 1, it was reached a Norm of error 

around 10
-5
 only by using a mesh with h = 1/50 

(Table 5). 

  

 
Fig. 5 Cubic Multi-Connected Domain  

(section xz). 

 

Table 5. Norm of error in solution of T(x,y,z), 

application 3. 

8 nodes 

NNost h Nelem Norm L2 Norm L∞∞∞∞  

1309 1/10 920 1.58E-03 6.64E-03 

8883 1/20 7360 4.29E-04 1.64E-03 

28241 1/30 24840 1.96E-04 7.32E-04 

64903 1/40 58880 1.12E-04 4.12E-04 

124389 1/50 115000 7.27E-05 2.63E-04 

212219 1/60 198720 5.08E-05 1.83E-04 
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Table 6. Norm of error in solution of Tx(x,y,z), 

application 3. 

8 nodes 

NNost h Nelem Norm 

L2  
Norm L∞∞∞∞  

1309 1/10 920 3.62E-01 1.66E+00 

8883 1/20 7360 1.88E-01 9.01E-01 

28241 1/30 24840 1.27E-01 6.18E-01 

64903 1/40 58880 9.58E-02 4.71E-01 

124389 1/50 115000 7.69E-02 3.80E-01 

212219 1/60 198720 6.42E-02 3.18E-01 

 

    In Tables 6 and 7 the same difficulty found in 

the application 1 is noted, thus, the error in the 

numerical solution of derivatives presented 2 to 3 

orders of accuracy inferior than the solution of T. 

This situation can be mitigated with a higher 

refinement in mesh, however a small value to h. 

 

Table 7. Norm of error in the solution of  

Ty(x,y,z) = Tz(x,y,z), application 3. 

8 nodes 

NNost h Nelem Norm L2  NormL∞∞∞∞  

1309 1/10 920 2.01E-01 9.78E-01 

8883 1/20 7360 9.91E-02 4.92E-01 

28241 1/30 24840 6.57E-02 3.28E-01 

64903 1/40 58880 4.91E-02 2.46E-01 

124389 1/50 115000 3.92E-02 1.97E-01 

212219 1/60 198720 3.26E-02 1.64E-01 

 

Table 8. Norm of error in the solution of T(x,y,z), 

application 1. 

27 nodes 

NNost h Nelem Norm L2 Norm L∞∞∞∞  

8883 1/10 920 2.05E-05 1.90E-04 

64903 1/20 7360 2.65E-06 1.76E-05 

212219 1/30 24840 4.86E-06 5.01E-06 

 

Table 9. Norm of error in the solution of 

Tx(x,y,z), application 1. 

27 nodes 

NNost h Nelem Norm L2  Norm L∞∞∞∞  

8883 1/10 920 2.03E-02 1.19E-01 

64903 1/20 7360 5.22E-03 3.28E-02 

212219 1/30 24840 2.46E-03 1.49E-02 

 

With the usage of hexahedron of 27 nodes 

(Tables 8, 9 and 10), the Galerkin method 

already reached an accuracy of 10
-5
 in T(x,y,z) 

for a mesh with h = 1/10, and an accuracy of 

order 10
-3
 to the derivatives. One important 

information is that, with hexahedron of 27 nodes, 

the lack of accuracy of derivatives in comparison 

to T(x,y,z) is smaller than the hexahedron with 8 

nodes. 

 

Table 10. Norm of error in the solution of 

Ty(x,y,z) = Tz(x,y,z), aplicação 1. 

27 nodes 

NNost h Nelem Norm L2  NormL∞∞∞∞  

8883 1/10 920 8.81E-03 5.12E-02 

64903 1/20 7360 2.12E-03 1.28E-02 

212219 1/30 24840 1.21E-03 9.76E-03 

 

Application 4  

    In this case, the Eq. (1), it considers kx, ky and 

kz unities, B = 0 and the boundary conditions 

given by: 

- plane xz with y = 0 ou y = 1 ⇒ ∂T/∂y = 0 
(isolated) 

- plane yz with x = 0 ou x = 1 ⇒ T = 5 

- plane xy with z = 0 ou z = 1 ⇒ T = 5 

- plane yz (holes) with x = 0.2; x = 0.4; x = 0.6 

or x = 0.8 ⇒ T = 0 

    - plane xy (holes) with z = 0.2; z = 0.4; z = 0.6 

or z = 0.8 ⇒ T = 0 

 

       Fig. 6 represents the mesh in the section xz, 

being this built in a regular manner with 

hexahedron 8 nodes. 

 

 
Fig. 6 Mesh in plane xz with y = 0.1, h =1/30, 

application 4. 

 

         The results of the profile of temperatures 

and its derivative in x and in the plane xz with     
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y = 0.1 are observed in the Figures 7 and 8. 

In order to avoid that the analysis of problems 

with non solution is done again only 

quantitatively, in Table 1 are shown some points 

of the mesh and its respective values of 

temperature.   

The mesh was refined in such way to 

demonstrate that how small is the value of h, 

smaller is the temperature variation on these 

points. 

 

 

 

 
Fig. 7 Profile of T(x,y,z) on plane xz, with y = 0.1 and h = 1/30, application 4. 

 

 
Fig. 8 Profile of Tx(x,y,z) on plane xz, with y = 0.1 and h = 1/30, application 4. 
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Table 11. Values of temperature found in some points on the computational mesh. 

 Points 

h 
x = 0.5 

y = 0.5 

z = 0.5 

x = 0.5 

y = 0.1 

z = 0.9 

x = 0.1 

y = 0.1 

z = 0.1 

x = 0.2 

y = 0.4 

z = 0.1 

x = 0.9 

y = 0.3 

z = 0.1 

x = 0.7 

y = 0.6 

z = 0.9 

1/10 0.855617 3.332209 3.893269 3.073076 4.746810 2.618263 

1/20 0.949956 3,410329 3.986353 3.078756 4.745790 2.697934 

1/30 0.970967 3.426053 4.003716 3.090993 4.746016 2.713255 

1/40 0.979251 3.432008 4.010020 3.096199 4.746201 2.718891 

1/50 0.983554 3.435073 4.013191 3.099240 4.746328 2.721745 

1/60 0.986140 3.436914 4.015068 3.101176 4.746418 2.723441 

1/70 0.987843 3.438127 4.016292 3.102504 4.746483 2.724551 

Erro
* 1.70E-03 1.21E-03 1.22E-03 1.32E-03 6.50E-05 1.11E-03 

* Difference between the results for h = 1/70 and h = 1/60. 

 

    In the Table 6 it is clear that the mesh 

refinement improve significantly the numerical 

results. In a mesh with h = 1/30, which requires a 

smaller memory utilization and reduced 

computational time, it is noted that, among the 

chosen points, the higher comparative difference 

among the results with the mesh h = 1/70 occurs 

in the point (x,y,z) = (0.5;0.5;0.5), being around 

0.016876, which in real application in 

engineering is considered neglected.  

V. CONCLUSIONS 

The GFEM is shown as an excellent tool in the 

solution of problems of heating conduction in 

tridimensional domains multi-connected. The 

results presented in the solution of T(x,y,z) are 

excellent, but the calculation of derivatives using 

the finite element have not shown so effective; 

despite of that, the errors to meshes less refined 

can be considered acceptable to engineering 

practices, once those are around 10
-2
. However it 

is important to mention that, whether the purpose 

is to calculate the heat flux, the Galerkin method 

is advisable with hexahedron of 27 nodes, where 

the mesh with h = 1/10, already reached an 

accuracy of around 10
-3
. 
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