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Abstract— The adaptive Discontinuous Galerkin
(DG) method for solving the one-dimensional conser-
vation equation is presented. In this paper we consider
the advection equation, the Burgers’ equation, and the
shallow water equations. To improve the accuracy of this
method, two types of adaptive technique are employed.
These are the adaptive polynomial(p-daptive) and the
adaptive mesh(h-adaptive). Troubled cells needed to be
refined are detected by two types of indicators, which are
error and gradient indicators. The present schemes have
been improved the accuracy of the solution during time
integration process. For smooth solution the accuracy can
be improve by the adaptive polynomial criteria, while the
accuracy of moving shock, rarefaction and high gradient
solution can be improved by the adaptive mesh scheme.
High gradient area in the computational domain can be
detected efficiently by both presented indicators

Keywords—Adaptive Discontinuous Galerkin method,
Advection equation, Burgers’ equation, Shallow water
equations

I. INTRODUCTION

Many real flow problems such as transport flows or
shallow water flows, for examples, can be expressed in the
form of conservation laws. These systems are
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usually represented as hyperbolic partial differential equa-
tions. There are numerous numerical methods, for instance,
the finite difference method (FDM) [1], the finite ele-
ment method (FEM) [18], the finite volume method (FVM)

[11, 16], or recently, the discontinuous Galerkin method
(DG) [14, 15] for solving these systems. By the FDM, A.
Harten and H. Tal-Ezer [1] presented a family of two-level
five-point implicit schemes to solve the one-dimensional
systems of hyperbolic conservation laws, which general-
ized the Crank-Nicholson scheme to the fourth order accu-
racy in both space and time. For the finite element method,
Z. Xu et. al [18] applied the h-adaptive streamline diffu-
sion finite element method with a small mesh-dependent
artificial viscosity to solve nonlinear hyperbolic conser-
vation equations. By applying the finite volume method,
G. Manzini [11] developed the cell-centered upwind dif-
ferences to solve the one-dimensional linear conservation
laws with stiff reaction source terms. More details of the
FVM can be found in Leveque, [16].

Conservation laws is an important class of homoge-
neous hyperbolic equation. The simplest case is when
we have constant coefficients in one dimension, namely a
scalar problem, in this case the equation is called the ad-
vection equation, the advection equation is an example of
equation in conservative form that has various kinds of be-
haviors. For example, a weak solution can be in the form of
a shock wave, namely, a solution that has a sharp gradient.
Other scalar problem is the Burgers’ equation, this equa-
tion has nonlinear flux function and a weak solution can
be in the form of a shock for a large time although initial
condition is smooth. For the case of system of equations,
the shallow water equations are also in conservation forms
which can be used to model many problems in real world
such as dam break, tsunami, flood, etc. These equations
can be derived from the conservation of mass and the con-
servation of momentum.

The Runge-Kutta Discontinuous Galerkin (RKDG)
method has several advantages. Not only it can be used to
handle complex geometries, and also adaptivity strategies
are easily applied since grid refinement can be done with-
out taking into account the continuity condition that is typi-
cally required by most conforming finite element methods.
Moreover, the degree of approximating polynomials can
be adjusted locally, which allows an efficient polynomial
adaptivity in each cell volume with totally independent of
its neighbors. Since we want to improve the accuracy of
numerical solutions, especially in the locally sharp gradient
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area in the computational domain. There are two strategies
that can overcome these issues, the adaptive polynomial de-
gree (p-adaptive), [10], and the adaptive mesh (h-adaptive),
[12].

In this work, we have applied these two concepts and
constructed algorithms for the adaptive strategies employ-
ing two types of indicators, gradient and error indicators,
for detecting troubled cells in the computational domain.
After detecting the troubled cells, we trace back to the so-
lution in the previous time to increase the polynomial de-
gree of those cells (p-adaptive) or divided those cells into
two smaller sub-cell (h-adaptive) and then evolve numeri-
cal solutions to the current time step. This algorithm gives
the new numerical solutions that have more accuracy than
the old one in the current time step.

The advection equation, the Burgers’ equation and the
shallow water equations, which are conservation equation,
are presented in Section 2, the numerical methodology
for the one-dimensional conservation laws, including
the algorithms for the adaptive polynomial and adaptive
mesh strategies, is presented in Section 3. The numerical
experiments and results are illustrated in Section 4, and
finally, the conclusions is given in Section 5.

II. CONSERVATION EQUATIONS

The one-dimensional hyperbolic equation of conserva-
tion laws represented in the time dependent problem takes
the form

∂

∂t
U (x, t) +

∂

∂x
F (U (x, t)) = 0, (1)

where U is an m-dimensional vector of conserved quan-
tities (or state variables), such as mass, momentum, or
energy, in a fluid dynamic problem, F (U) is an m-
dimensional vector called the flux function.

In this work, we consider three forms of (1) which
are the advection equation (m=1), the Burgurs’ equation
(m=1) and the shallow water equations (m=2).

A. The advection equation
The one-dimensional advection equation is

∂u

∂t
+ c

∂u

∂x
= 0, (2)

where x ∈ (0, L), and t ∈ (0, T ). Here U = u (x, t),
F (U) = cu, and c is constant.

B. The Burgers’ equation
The inviscid Burgers’ equation is expressed in the form

∂u

∂t
+
∂u2

∂x
= 0, (3)

where U = u (x, t) and F (U) = u2.

C. The shallow water equations
The one-dimensional shallow water equations are in

the form

∂U

∂t
+
∂F (U)

∂x
= S (U) , (4)

where

U =

(
h
q

)
, and F (U) =

(
q

q2

h + gh2

2

)
(5)

are the vector of conserved variables and the flux vector in
the x direction, respectively. For the conserved variables, h
is the water depth, u is the average flow velocity in the x-
direction, q = uh is the discharge, and g is the acceleration
due to gravity.

The right hand side of the system (4) represents source
term, given by

S (U) =

(
0

gh (S0 − Sf )

)
, (6)

which contains the effect of the bed slope S0, and the bed
friction Sf . The term Sf can be estimated by an empirical
formula as

Sf =
n2q |q|
h10/3

, (7)

where n is the Manning roughness coefficient.
In this work, we neglect the effect of source term, so

S (U) = 0. We then investigate the accuracy of the adap-
tive DG method for solving the shallow water equations
without source term treatment.

III. METHODOLOGY

In this section, we presented the Discontinuous
Galerkin method and adaptive algorithms for solving the
one-dimensional conservation equation.
A. Discontinuous Galerkin method for the one-

dimensional conservation equation
We first partition the domain (0, L) into K subinter-

vals, and denoted the j-th cell by Ij =
[
xj−1/2, xj+1/2

]
, j = 1, . . .K, with grid size ∆j = xj+ 1

2
− xj− 1

2
, and

cell center xj =
(
xj+ 1

2
+ xj− 1

2

)
�2 , xj+ 1

2
and xj− 1

2
are

the left and right boundaries of the considering cell respec-
tively.

For the advection and Burgers’ equations, we approx-
imate the solution u by uh in the finite dimensional space
V N
h . For in the shallow water equations, we approximate

the solution U by Uh =

(
hh
qh

)
in the finite dimensional

space, V N
h × V N

h , where V N
h defined by
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V N
h =

{
v ∈ L1 (0, 1) : v|Ij ∈ PN (Ij) , j = 1, . . .K

}
,

(8)
where PN (Ij) denotes the space of polynomials of degree
at most N on Ij .

Multiplying (1) by a test function vh (x) ∈ PN (Ij)
and using the integration by parts over Ij , we obtain a weak
form, ∫

Ij

(∂tUh) vhdx−
∫
Ij

F (Uh) ∂xvhdx

+ [F (Uh) vh]j+ 1
2
− [F (Uh) vh]j− 1

2
= 0. (9)

The flux function F can be approximated using numer-
ical flux F̂ that depends on two values of Uh at the inter-
faces xj± 1

2
by

F̂j± 1
2

= F̂
(
Uh|−j± 1

2

, Uh|+j± 1
2

)
(10)

where Uh|−j± 1
2

and Uh|+j± 1
2

are the approximate solutions

from the left and right of the boundaries j ± 1
2 of the j-th

cell, respectively.
By choosing the Legendre polynomials as the local ba-

sis functions, the approximate solution Uh can be written
as

Uh (x, t) =
N∑

m=0

Um
j (t)ϕm (x) , (11)

where Um
j (t) is the coefficient function of t, and ϕm (x) is

the Legendre polynomial defined by

ϕm (x) = Pm

(
2 (x− xj)

∆j

)
. (12)

As in the standard Galerkin method, we choose the test
functions vh (x) to be the same as the basis functions, i.e.,
vh (x) = {ϕl (x)}Nl=0. Some important properties of the
Legendre’s polynomial are

1∫
−1

Pm (ξ)Pl (ξ) dξ =
2

2l + 1
δml , (13)

where

ξ =
2 (x− xj)

∆j
, δml =

{
1, m = l

0, m 6= l
, (14)

and

Pl (−1) = (−1)
l
, Pl (1) = 1 . (15)

The weak form (9) is then simplified to

dU l
j (t)

dt
=

2l + 1

∆j

∫
Ij

F (Uh) ∂xϕl (x) dx+

2l + 1

∆j

{
(−1)

l
F̂j− 1

2
− F̂j+ 1

2

}
, (16)

where j = 1, . . . ,K.

B. Numerical flux
The system of ODEs in equation (16) can be integrated

in time by any standard integrators. In our scheme, we
apply the Runge-Kutta method. Detail derivation will be
given in the next subsection. The accuracy of approximate
solutions is depend directly on the method for approximat-
ing fluxes at interfaces, F̂j± 1

2
, called numerical fluxes. we

apply two approximations which are LLF and HLL. Details
are provided as follows.

1. The local Lax-Friedrichs flux (LLF flux)
We employ the local Lax-Friedrichs flux for the ad-
vection equation and the Burgers’ equation, this flux
is represented by

F̂LLF (UL, UR) =
1

2
[F (UL) + F (UR)− C (UR − UL)] ,

(17)
where FL = F (UL), FR = F (UR) , and
C = max

∣∣∣F ′ (s)∣∣∣ , and min (UL, UR) ≤ s ≤
max (UL, UR).

2. The Harten-Lax-van Leer flux (HLL flux)
For the shallow water equations, Toro [8, 9] presented
a suitable HLL(Harten-Lax-van Leer)-type flux [7, 8,
9, 15] based on the work by Harten et. al.[1],

F̂HLL (UL, UR) =


FL if 0 ≤ SL;

F ∗ if SL ≤ 0 ≤ SR;

FR if 0 ≥ SR,

(18)

where F ∗ is given by

F ∗ =
SRFL − SLFR + SLSR (UR − UL)

SR − SL
. (19)

The wave speeds are chosen under the assumption of
two-rarefaction waves in the star region,

SL = min
(
uL −

√
ghL, u

∗ −
√
gh∗
)
, (20)

SR = min
(
uR +

√
ghR, u

∗ +
√
gh∗
)
, (21)
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with

√
gh∗ =

1

2

(√
ghL +

√
ghR

)
− 1

4
(uR − uL) ,

(22)

u∗ =
1

2
(uL + uR) +

√
ghL −

√
ghR. (23)

The expressions for the wave speeds are obtained by
assuming the wet bed condition, i.e. positive flow
depth h on both sides of the computational domain.
For the dry bed case, the wave speeds are approxi-
mated by

SL = uL −
√
ghL, (24)

and
SR = uL + 2

√
ghL. (25)

C. Total Variation Diminishing Runge Kutta
(TVD-RK)

After discretizing (4) in spatial space by the DG
method, we obtain a system of ODEs corresponding to
(16). The system can be rewritten in the form of

dUh (t)

dt
= Lh (Uh, t) , ∀t ∈ (0, T ) , (26)

with initial condition

Uh (x, 0) = U0h, (27)

where Lh (Uh, t) represents the right hand side of equation
(16).

Time discretization process is performed by the high-
order TVD Runge Kutta method which was introduced pre-
viously by Chi-Wang Shu [6]. Noted that when the poly-
nomial degree N is used, a TVD version of Runge Kutta
method (TVD-RK) at least of order N + 1 must be em-
ployed.

Let {tn}Mn=0 be a partition of [0, T ] inM intervals, and
∆tn = tn+1− tn, for n = 0, . . . ,M − 1. The time march-
ing algorithm can be summarized as follows.

1. Set U0
h = U0h,

2. For n = 0, ..,M − 1 compute Un+1
h from Un

h as fol-
lows:

3. set d(0) = Un
h ,

4. for i = 1, ..., k + 1 compute the intermediate func-
tions:

d(i) =

{
i−1∑
s=0

(
αisd

(s) + βis4tnLh

(
d(s), t

))}
,

5. set Un+1
h = d(k+1),

where αis and βis are parameters depend on the order of
TVD-RK.

For example, the TVD-RK of orders 2 and 3 are given by

TVD-RK order 2

d(1) = Un
h + Lh (Un

h , t
n) , (28)

Un+1
h = d(2) =

1

2

(
Un
h + d(1) +4tLh

(
d(1), tn +4t

))
,

(29)

TVD-RK order 3

d(1) = Un
h + ∆tLh (Un

h , t
n) , (30)

d(2) =
1

4

(
3Un

h + d(1) + ∆tLh

(
d(1), tn + ∆t

))
, (31)

Un+1
h =

1

3

(
Un
h + 2d(2) + 2∆tLh

(
d(2), tn +

1

2
∆t

))
.

(32)

By these setting, the TVD-RK has some useful stability
properties. More details can be seen in [2, 14].

D. The MUSCL slope limiter
When high-order polynomials are used for approxi-

mating the solution, numerical method may produce some
unphysical oscillations [2, 7, 14, 15, 16]. A slope limiter
concept can be applied on every computational cell to
avoid these undesired oscillations. For instance, in the
case of piecewise linear appoximation, the slope limiter of
Uh|Ij denoted by ΛΠ1

h

(
Uh|Ij

)
is expressed as

ΛΠ1
h

(
Uh|Ij

)
= U j + (x− xj)

m

(
Ux,j ,

U j+1 − U j

∆j
,
U j − U j−1

∆j

)
, (33)

for j = 1, . . . ,K .

In (33), Ūj is the mean value in the j-th cell, Ux,j is
the slope of solution in the j-th cell, and m is the minmod
function defined by

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 260



m (a1, . . . , an)


sign (a1) min1≤i≤n |ai| ,
if sign (a1) = . . . = sign (an) ,

0, otherwise.
(34)

This is the well-known slope limiter of the MUSCL
schemes introduced by vanLeer[4, 5].

In the case that the aprroximate solution is a polyno-
mial degree N ≥ 2, that is,

Uh|Ij (x, t) =
N∑
l=0

U l
j (t)ϕl (x) .

The P 1-part of uh denoted by U1
h defined as, see [2],

U1
h |Ij (x, t) =

1∑
l=0

U l
j (t)ϕl (x) .

The slope limiter procedure in this case denoted by ΛΠN
h ,

is summarized as follows:
(1) Compute Ũ−

j+ 1
2

and Ũ+
j− 1

2

from

Ũ−
j+ 1

2

= Ūj +m
(
U−
j+ 1

2

− Ūj , Ūj − Ūj−1, Ūj+1 − Ūj

)
,

(35)

Ũ+
j− 1

2

= Ūj −m
(
Ūj − U+

j− 1
2

, Ūj − Ūj−1, Ūj+1 − Ūj

)
.

(36)
(2) If Ũ−

j+ 1
2

= U−
j+ 1

2

and Ũ+
j− 1

2

= U+
j− 1

2

set

ΛΠN
h

(
Uh|Ij

)
= Uh|Ij .

(3) Otherwise, take Uh|Ij equal to ΛΠ1
h

(
U1
h |Ij

)
.

When the slope limiter has been applied at each inter-
mediate computation of the Runge-Kutta method, the inter-
mediate function in this case becomes

d(i) = ΛΠh

{
i−1∑
s=0

(
αisd

(s) + βis4tnLh

(
d(s), t

))}
.

The parameters αis and βis depend on the choice of TVD-
RK order.

E. Adaptive Discontinuous Galerkin method
In general, the accuracy of the approximate solution

can be improved by increasing the degrees of polynomials
of local basis functions in each cell or refining grid cells
with smaller mesh size in the computational domain. But
for computational efficiency, it should be adapted only on
troubled cells where the solutions have large error, sharp
gradients, or discontinuities.

In this section, we present two types of adaptive algo-
rithms which are adaptive polynomial and adaptive mesh.

The adaptive polynomial is successfully applied for solving
the case of smooth flow by increasing the order of polyno-
mial basis while the adaptive mesh should be used to han-
dle the case of high gradients or discontinuities. To detect
which cell needed to be applied the adaptive criteria, we
need some indicators to detect those troubled cells. In this
work, we employ two types of indicators which are error in-
dicator (assuming we know the exact solution) and gradient
indicator. The error indicator is introduced for checking the
performance of the gradient indicator. Since most of prob-
lems have no exact solution, so the gradient indicator can
be applied in practical case.

E.1 Indicators

The values of the indicators for the j-th cell at time tn,
denoted by εnj , are defined as follows:

(1) Error indicator

εnj =

√√√√∑ng

(
qnexact − qnapprox

)2
ng

, (37)

where qnexact is the exact solution, qnapprox is an approxi-
mate solution, and ng is the number of nodes on the j-th
cell at time tn.

(2) Gradient indicator

εnj,1 =

∣∣∣qnapprox|j+ 1
2
− qn0approx|j

∣∣∣
∆j/2

, (38)

εnj,2 =

∣∣∣qnapprox|j− 1
2
− qn0approx|j

∣∣∣
∆j/2

, (39)

where qnapprox|j− 1
2

and qnapprox|j+ 1
2

are approximate solu-
tions for the j-th cell at the left and right boundaries respec-
tively, and qn0approx|j is approximate solution at the center
of the j-th cell.

E.2 Adaptive polynomial for RKDG method (p-adaptive)

Algorithm for the adaptive polynomial

Given:
A control number for increasing the degree of polynomial,
θ1.
A control number for decreasing the degree of polynomial,
θ2.
The initial degree of polynomial, mindeg.
The maximum degree of polynomial, maxdeg.
The final time, T .
A partition of time domain [0, T ], {tn}Nn=0.
Initial condition, u0 at time step t0.
The number of cells, K.

The algorithm is summarized below:
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Step 1.

1. Given a uniform partition of the domain.

2. Compute approximate solution u1 at time step t1.

3. For each cell j = 1, 2, ...,K,

• set the initial degree of polynomial deg0j =
mindeg.

Step 2. Define the degree of polynomial in the j-th cell at
time tn by degnj ,

1. Compute the indicator εnj .

2. Set maxε = max1≤j≤K

{
εnj
}

. For each cell j =
1, 2, ...,K,

• error indicator case: If εnj > θ1maxε, mark this
j-th cell as a troubled cell.

• gradient indicator case: If εnj,1 > θ1maxε or
εnj,2 > θ1maxε, mark this j-th cell as a trouble
cell

3. Increase the degree of polynomial of the mark cell.

• If degn−1
j = maxdeg, do nothing.

• If degn−1
j < maxdeg, set the new degree in that

troubled cell as degn−1
j |new = degn−1

j + 1.

4. For the current troubled cell at time tn, n ≥ 1

• error indicator case: If εnj < θ2maxε, release
this troubled cell as a usual cell.

• gradient indicator case: If εnj,1 < θ2maxε and
εnj,2 < θ2maxε release this troubled cell as a
usual cell.

5. Decrease the degree of polynomial of usual cells.

• If the degn−1
j = mindeg, do nothing.

• If degn−1
j > mindeg, set the new degree as

degn−1
j |new = degn−1

j − 1.

In this step, we have a new degree of polynomial for
each cell at time tn−1.

Step 3. Using L2-projection, project the tempo-

ral coefficients
{
ulj
(
tn−1

)}degn−1
j

l=0
to the new set of{

ulj
(
tn−1

)}degn−1
j

l=0
|new.

Step 4. Evolve numerical solutions of all cells from tn−1

to tn.

Step 5. If n < N , repeat the whole steps by going back to
step 2.

E.3 Adaptive mesh for RKDG method (h-adaptive)

Since for shock or discontinuous solution, the high-
order of polynomial approximation cannot improve the
accuracy of numerical solution, the adaptive mesh criteria
can be employed to increase the accuracy of solution in
this case.

Algorithm for adaptive mesh

Given:
A control number used to divide troubled cell into two
smaller cells, θ1.
A control number for merging untroubled cell into one
cell, θ2.
The degree of polynomial, N .
The maximum level of mesh partition, maxlev.
The final time, T .
A partition of time domain [0, T ], {tn}Nn=0.
Initial condition, u0 at time step t0.
The initial number of cell K.

The algorithm is summarized below:

Step 1.

1. Given a uniform partition of the domain.

2. Compute approximate solution u1 at time step t1.

3. For each cell j = 1, 2, ...,K,

• set the initial mesh level of every cell as lev0j =
0..

Step 2. Define the mesh partition at time tn and the mesh
level for the j-th cell by {ln} and levnj , respectively.

1. Compute the indicator εnj .

2. Set maxε = max1≤j≤K

{
εnj
}

. For each cell j =
1, 2, ...,K,

• error indicator case: If εnj > θ1maxε, mark this
j-the cell as a troubled cell.

• gradient indicator case: If εnj,1 > θ1maxε or
εnj,2 > θ1maxε, mark this j-th cell as a trouble
cell

3. Divide mark cells into two sub-cells.

• If the levn−1
j = maxlev, do nothing.

• If levn−1
j < maxlev, set new level as

levn−1
j |new = levn−1

j +1, and divide it into two
sub-cells.

4. For the current troubled cell at time tn, n ≥ 1

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 262



• error indicator case: If εnj < θ2maxε, release
this troubled cell as a usual cell.

• gradient indicator case: If εnj,1 < θ2maxε and
εnj,2 < θ2maxε release this troubled cell as a
usual cell.

5. Merge two usual cells into one cell.

• If levn−1
j = 0, do nothing.

• If levn−1
j > 0, set the new level to be

levn−1
j |new = levn−1

j − 1 and merge those two
sub-cells into one cell (merge cells that come
from the same primary cell).
This step provides the new mesh level for each
cell at time tn−1.

Step 3. Using L2-projection, project the tem-
poral coefficients

{
ulj
(
tn−1

)}N
l=0

from the
mesh partition

{
ln−1

}
to the new mesh partition{

ln−1
}
|new.

Step 4. Evolve numerical solutions for every cell
from tn−1 to tn.

Step 5. If n < N , repeat the whole steps by going
back to step 2.

IV. NUMERICAL RESULTS

The numerical results obtained by the adaptive Discon-
tinuous Galerkin method with two indicators are presented
in this section.
A. The advection equation
A.1 Adaptive polynomial RKDG method

We consider the pure advection equation with initially
smooth condition

ut + 3ux = 0, (-10,10)× (0, 1) , (40)

u (x, 0) = e−(x−3)2 . (41)

We will show some results by varying the values of θ1
and θ2, and considering different initial degree of polyno-
mial, maximum degree of polynomial, and the number of
cells.

We denote PN as the numerical solutions obtained
from the RKDG method without adaptive criteria with
polynomial degree N , and P l/Ph refers to the numerical
results obtained from the adaptive polynomial RKDG with
initial degree l and the maximum degree h.

We show the accuracy of numerical solutions by the
adaptive polynomial RKDG method using error indicator

Figure 1: The comparison of the exact solution and the nu-
merical solution at the final time T = 1 using error indica-
tor(top) and gradient indicator(bottom).

and gradient indicator in Figure 1, where the initial degree
is 1 and the maximum degree is 3. Here, θ1 and θ2 are
0.025 and 0.01 respectively. It is found that, the numer-
ical solution (circle) is in good agreement with the exact
solution (solid line) including around the peak area when
using error indicator, but the profile is in good agreement
with the exact solution except around the peak area when
using gradient indicator. However, if we want to improve
the solution accuracy in this area, we have to set the values
of θ1 and θ2 to be sufficiently small in order to detect more
troubled cells near the peak because gradient is quite small
in this area. The degrees of polynomial for each cell in the
time domain of Figure 1 is shown in Figure 2. For each
time step, the indicators can detect the troubled cells which
are moving with the same speed as of the solution profile.
The troubled cells are in the high gradient areas. The color
bar shows the values of degrees of polynomial. The poly-
nomial degree increases from one to three for the troubled
cells. Also, the troubled cells are released to usual cells
when the solution moves to the right such that polynomial
degree decreases from three to one.

The RMS errors obtained by the adaptive polynomial
RKDG method when using error indicator and gradient in-
dicator are shown in Tables I and II respectively.

It can be seen from Table I and II that, when the values
of θ1 and θ2 are fixed and without adaptive polynomial cri-
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Figure 2: The x−t plot shows adaptive polynomial method
from degree 1 to degree 3 when using error indicator(top)
and gradient indicator(bottom).

Table I: The RMS errors using error indicator with K =
100 cells and for some values of θ1 and θ2.

(θ1, θ2) (0.1, 0.05) (0.025, 0.01) (0.01, 0)
P 1 1.6468e-003 1.6468e-003 1.6468e-003
P 2 7.6041e-005 7.6041e-005 7.6041e-005
P 3 2.5861e-006 2.5861e-006 2.5861e-006

P 1/P 2 1.3456e-004 8.9834e-005 8.3948e-005
P 1/P 3 2.8599e-004 2.8096e-005 9.8543e-006
P 2/P 3 1.6238e-005 2.8713e-006 2.7624e-006

Table II: The RMS errors when using gradient indicator
with K = 100 cells for some values of θ1 and θ2.

(θ1, θ2) (0.1, 0.05) (0.025, 0.01) (0.01, 0)
P 1 1.6468e-003 1.6468e-003 1.6468e-003
P 2 7.6041e-005 7.6041e-005 7.6041e-005
P 3 2.5861e-006 2.5861e-006 2.5861e-006

P 1/P 2 3.1666e-004 1.1455e-004 9.0263e-005
P 1/P 3 3.5018e-004 8.1399e-005 3.4526e-005
P 2/P 3 1.0345e-005 4.2764e-006 3.1197e-006

teria, the results obtained by the higher degree polynomial
are more accurate than the results calculated by the lower
degrees of polynomial. These results correspond with the
theoretical results in [2]. The RMS error of P 2 is compara-
ble with P 1/P 2. They are in the same order, however the
P 2 method gives more slightly accurate results. Likewise,
the results from the P 3 and the P 2/P 3 methods are com-
parable. The P 3 method provides slightly better results.
The RMS errors of P 1/P 3 are less than P 1 but are in the
same order of P 3 when using small values of θ1 and θ2.
These results show that the computational cells have been
adapted from degree one to degree three until the numer-
ical solution has the RMS error in the same order as the
maximum degree of polynomial applied. Numerial results
by other adaptive degrees of polynomial can be concluded
similarly.

A.2 Adaptive mesh RKDG method

For the initial condition with discontinuity, the accu-
racy of numerical solution is not improved by increasing
the order of polynomial. But the accuracy can be improved
by increasing the number of cells. Hence, adaptive mesh
refinement is suitable in this case.

We consider the pure advection equation with initially
discontinuous profile

ut + 3ux = 0, (-10,10)× (0, 1) , (42)

u (x, 0) =

{
1, if x > 2

2, if x < 2 .
(43)

Some numerical results by error indicator when fix-
ing the degree of polynomial are shown in Figure 3. We
have varied four different values of maxlev from 1 to 4 in
the adaptive mesh algorithm. Thus, maxlev = 4 corre-
sponds to the smallest divided cell from the primary cell,
and maxlev = 0 meaning initial mesh partition size.

In Figure 3, We have set (θ1, θ2) = (0.025, 0.01). It is
shown that the sharp-front can be captured accurately when
setting maxlev = 4 because more cells have been detected
as troubled cells and these cell are divided into smaller sub-
cells. The smallest mesh spacing occurs at maxlev = 4.
Similar arguments can be made when the gradient indicator
is applied.

When we use polynomial degree 1 as a basis function,
the results of various values of θ1 and θ2 when using er-
ror and gradient indicators are shown in Tables III and IV,
respectively. The notation PN

maxlev refers to the results of
using polynomial degree N as a basis with maxlev in the
adaptive mesh method.

It can be seen from Tables III and IV that the most ac-
curate result can be obtained by using maxlev=4, and the
RMS errors are not directly effected by the values of θ1
and θ2 because the troubled cells appear only around the
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Figure 3: The comparisons between the exact solution (dot line) and the numerical solution (solid line) at time T = 1, using
error indicator for four cases of maxlev: maxlev = 1 , maxlev = 2 , maxlev = 3, and maxlev = 4.

Table III: The RMS error when using error indicator with
K=100, N=1 for some values of θ1 and θ2.

(θ1, θ2) (0.1, 0.05) (0.025, 0.01) (0.01, 0)
P 1 0.0647 0.0647 0.0647
P 1
1 0.0524 0.0524 0.0524
P 1
2 0.0435 0.0441 0.0442
P 1
3 0.0381 0.0393 0.0395
P 1
4 0.0362 0.0378 0.0381

Table IV: The RMS error when using gradient indicator
with K=100, N=1 for some values of θ1 and θ2.

(θ1, θ2) (0.1, 0.05) (0.025, 0.01) (0.01, 0)
P 1 0.0647 0.0647 0.0647
P 1
1 0.0523 0.0524 0.0524
P 1
2 0.0426 0.0435 0.0439
P 1
3 0.0375 0.0368 0.0385
P 1
4 0.0658 0.0300 0.0353

Table V: The RMS error when using error indicator with
K=100, N=2 for some values of θ1 and θ2.

(θ1, θ2) (0.1, 0.05) (0.025, 0.01) (0.01, 0)
P 2 0.0492 0.0492 0.0492
P 2
1 0.0399 0.0384 0.0404
P 2
2 0.0294 0.0294 0.0310
P 2
3 0.0231 0.0227 0.0233
P 2
4 0.0191 0.0204 0.0204

shock area and the number of troubled cells are not dif-
ferent for each pair of θ1 and θ2. However, for the gradi-
ent indicator case, and (θ1, θ2) = (0.1, 0.05), these values
are relatively large so that the trouble cells cannot be de-
tected correctly like the case of (θ1, θ2) = (0.025, 0.01).
The (x − t) plot showing the adaptive mesh area is pre-
sented in Figure 4. The troubled cell zone for the case of
(θ1, θ2) = (0.1, 0.05) is smaller when comparing with the
case of (θ1, θ2) = (0.025, 0.01). The results when increas-
ing the polynomial degree to N = 2 are shown in Tables
V and VI. The RMS error decreases as the maxlev in-
creases such that maxlev = 4 provides the smallest RMS
error. This case is the pure advection case with initially dis-
continuous profile, these observations reveal that increas-
ing the order of polynomial can improve slightly numerical
accuracy but it is not significant.
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Figure 4: The adaptive area for N = 1, K = 100, (θ1, θ2) = (0.1, 0.05) (left) and (θ1, θ2) = (0.025, 0.01) (right) with
gradient indicator.

Table VI: The RMS error when using gradient indicator
with K = 100 cells, polynomial degree N = 2 for some
values of θ1 and θ2.

(θ1, θ2) (0.1, 0.05) (0.025, 0.01) (0.01, 0)
P 2 0.0492 0.0492 0.0492
P 2
1 0.0415 0.0419 0.0411
P 2
2 0.0351 0.0319 0.0307
P 2
3 0.0388 0.0258 0.0231
P 2
4 0.0549 0.0245 0.0199

B. The Burgers’ equation
We consider the Burgers’ equation with initial condi-

tion

u (x, 0) = sin (x) , 0 < x < π. (44)

B.1 Adaptive polynomial RKDG method

In this section, we fix the number of cell K where as
the polynomial degree is adapted automatically following
the results from indicators. The comparisons of numeri-
cal solutions with the exact solution by two types of in-
dicators are shown in Figure 5. The polynomial degree
increase from 1 (mindeg) to 3 (maxdeg). The numeri-
cal results with increasing order of polynomial basis are in
good agreement with the exact solutions almost the whole
domain except at the area that sharp gradient is forming.
It shows that increasing just the polynomial degree is not
enough to improve the accuracy of numerical solution in
case of high gradient. Instead, the adaptive mesh method
can be appiled in this case. Some results will be shown in
the next section.

The behaviors of detecting troubled cells by the error
and gradient indicators are shown in Figure 6. They are
relatively different in the way of increasing or decreasing
the polynomial degrees.

Table VII: The RMS errors when using error indicator with
K = 50 and K = 100 cells for θ1 = 0.85 and θ2 = 0.5.

K = 50 K = 100
P 1 0.0579 0.0325
P 2 0.0495 0.0276
P 3 0.0437 0.0244

P 1/P 2 0.0493 0.0276
P 1/P 3 0.0436 0.0243
P 2/P 3 0.0437 0.0244

The solution accuracy measured in terms of the RMS
error is shown in Tables VII and VIII. In the case of without
adaptive polynomial, increment of polynomial degree re-
sults to smaller RMS error when K is fixed (0.057-0.043).
But for the same value of N , for example N=3, increas-
ing cell from K = 50 to 100 provides significantly im-
provement. Error decreases from 0.0437 to 0.0244 for both
error and gradient indicator used. It impiles that error in
the sharp gradient area can be decreased by increasing the
number of cell, not polynomial degree. When we apply
the adaptive polynomial criteria by P 1/P 2, P 1/P 3 and
P 2/P 3 for K fixed, the RMS errors are almost the same
value. It shows again that the adaptive polynomial gives
only small improvement and in order of degree N = 3
used. It can be concluded that the adaptive mesh method
should be applied instead of using the adaptive polynomial
method in the case of shock deformation or high gradient
appearing in the computational domain. The resluts by the
adaptive mesh method for the Burgers’ equation will be
shown in the next section.

B.2 Adaptive mesh RKDG method

Some numerical results by error and gradient indica-
tors when fixing the degree of polynomial are shown in this
section. We have varied four different values of maxlev
from 1 to 3 in the adaptive mesh algorithm. The compar-
ison between the exact solution and the approximate solu-
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Figure 5: The comparisons between the exact solution and the approximate solution at T = 0.5, for mindeg = 1, maxdeg =
3 K = 100, using error indicator (top) and gradient indicator (bottom).

Figure 6: The adaptive area for mindeg = 1, maxdeg = 3 K = 100, (θ1, θ2) = (0.85, 0.5) using error indicator (top) and
gradient indicator (bottom).
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Table VIII: The RMS errors when using gradient indicator
with K = 50 and K = 100 cells for θ1 = 0.85 and θ2 =
0.5.

K = 50 K = 100
P 1 0.0579 0.0325
P 2 0.0495 0.0276
P 3 0.0437 0.0244

P 1/P 2 0.0495 0.0277
P 1/P 3 0.0438 0.0244
P 2/P 3 0.0437 0.0244

tion when we useN = 2, K = 100, (θ1, θ2) = (0.85, 0.5),
and final time T = 0.5 is shown in Figure 7. It shows that
the numerical results from the error and gradient indicator
are in good agreement with the exact solution. They pro-
vide similar results of numerical accuracy. But they are
different in detecting adaptive areas.

Figure 8 shows the adaptive mesh area in each time
steps from t = 0 to t = 1. The error indicator detects trou-
bled cell zone dynamically. It increases slightly the adap-
tive level. The shock area appears at the middle of the com-
putational domain as time increases. At the early step, the
error indicator does not detect this zone. It detects later
when this zone has relatively large error. In contrast to
the gradient indicator, the adaptive areas are static for all
time step calculated. The adaptive areas appear on the left,
the middle, and the right of the computational domain due
to large gradients. It shows different patterns in detecting
adaptive areas by these two indicators.

When we use polynomial degree N = 1 or 2 as a basis
function, and the number of cell K = 50 or 100 cells, the
numerical results for various maxlev comparing with the
RKDG method without adaptive mesh criteria are shown
in Tables IX and X, for error and gradient indicators, re-
spectively. Numerical accuracy in terms of the RMS error
for various cases of maxlev in comparing with the RKDG
method without adaptive mesh criteria are shown in Tables
IX and X. Superscipt and subscript of P refer to the poly-
nomial degree and maxlev respectively. It can be seen that
for fixing the degree of polynomial and K, the RMS error
decreases as maxlev increases. Case of larger K provides
smaller RMS errors. Also, using higher polynomial degree
can improve accuracy in the case of Burger’s equation be-
cause the solution remain has many smooth areas such that
increasing order of approximation can improve solution ac-
curacy.

Table IX: The RMS error using N = 1 and N = 2 with
K = 50 and 100, and (θ1, θ2) = (0.85, 0.5) , error indica-
tor is applied.

maxlev K = 50 K = 100
P 1 0.0579 0.0325
P 1
1 0.0340 0.0171
P 1
2 0.0222 0.0116
P 1
3 0.0189 0.0103

maxlev K = 50 K = 100
P 2 0.0360 0.0202
P 2
1 0.0249 0.0111
P 2
2 0.0143 0.0065
P 2
3 0.0136 0.0062

Table X: The RMS error using N = 1 and N = 2 with
K = 50 and 100, and (θ1, θ2) = (0.85, 0.5) , gradient
indicator is applied.

maxlev K = 50 K = 100
P 1 0.0579 0.0325
P 1
1 0.0348 0.0188
P 1
2 0.0235 0.0109
P 1
3 0.0184 0.0068

maxlev K=50 K=100
P 2 0.0360 0.0202
P 2
1 0.0249 0.0111
P 2
2 0.0138 0.0063
P 2
3 0.0089 0.0036

C. Adaptive mesh RKDG method for the shal-
low water equations

In this section, we apply the RKDG method for solv-
ing the one-dimensional shallow water equations in case of
no source terms. We consider in both wet and dry beds.
The initial condition is assumed to be discontinuous with
two different water levels on the left and right at the point
of x = 0. This problem is called the one-dimensional dam
break problem. Due to its initially discontinuous condition,
the solution developes a moving sharp gradient (call shock
wave) in the computational domain. The adaptive polyno-
mial strategy cannot improve numerical accuracy. Thus,
we apply only the RKDG method with the adaptive mesh
criteria to solve the shallow water equations in this section.

Wet bed case
The initial water levels are assumed as

h (x, t) =

{
1, if x < 0,

0.6, if x > 0.
(45)

The initial velocity is assumed to be zero meaning that fluid
is initially at rest.
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Figure 7: The comparisons between the exact solution and the approximate solution at T = 0.5, for maxlev = 2 (top), using
error indicator (top) and gradient indicator (bottom).

Figure 8: The adaptive area for N = 2, K = 100, (θ1, θ2) = (0.85, 0.5) using error indicator (top) and gradient indicator
(bottom).
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Figure 9: The comparison between the exact solution (solid line) and the approximate solution (dot line) at T = 1 for
maxlev = 2 (left), and adaptive level in the x-t plane (right) by error indicator.

In Figure 9 (top), we set N = 1, K = 100, and
(θ1, θ2) = (0.005, 0.0025). It is shown that at T = 1, the
sharp front and rarefaction can be captured correctly. Var-
ious cells have been detected as troubled cells. They are
divided to be smaller sub-cells in the high gradient zones
during time integration. The smallest mesh spacing occurs
when the adaptive level is 2. The level of mesh for each
cell in the time domain is shown in Figure 9 (bottom). It
is shown that, the error indicator can detect troubled cells
which are moving with the high gradient solution profile.
The troubled cells are associate with the sharp-front and
rarefaction areas. The color bar shows the values of mesh
level for each time step. It look likes a v-shape. We have
also investigated the numerical accuracy by using gradient
indicator. Its function is similar to the error indicator. That
is it can detect the troubled cell zones like a v-shape, see in
Figure 10.

The numerical results for various values of maxlev
and polynomial degree when comparing with the RKDG
method without adaptive mesh strategy are shown in Ta-
bles XI (error indicator) and XII (gradient indicator). It can
be seen that for a fixed degree of polynomial, the RMS er-
ror decreases as the maxlev increases, and it shows that
the usage of many starting cells K provides higher accu-
racy. By fixing the polynomial degreeN = 1, the case ofK
= 200 and maxlev = 2 gives to the smallest RMS error for
both the error and gradient indicators applied. When us-
ing polynomial degree N=2, case of maxlev = 4 gives the
smallest RMS error. Troubled cells have been detected so
that smaller subcells can capture the high gradient of mov-
ing shock and rarefaction wave. For the same values of
maxlev and K, increasing the polynomial degree from 1
to 2 results to slighly decreasing the RMS error. It impiles
that increasing the number of cells has much more impact
to solution accuracy than the increasing the order of ap-
proximation in the case of moving shock.

Dry bed case
For dry bed problem, the initial water levels are as-

sumed as

h (x, t) =

{
1 if x ≤ 0,

0 if x > 0.
(46)

The initial velocity is assumed to be zero meaning that fluid
is initially at rest.

In Figure 11 (top), we set N = 2, K = 50, and
(θ1, θ2) = (0.005, 0.0025), various cells have been de-
tected as troubled cells which they can capture the rarefac-
tion correctly. They are divided to be smaller sub-cells in
the high gradient zones during time integration. The small-
est mesh spacing occurs when the adaptive level is 4. The
level of mesh for each cell in the time domain is shown in
Figure 11 (bottom). In this case the troubled cells are as-
sociate with the rarefaction areas that are developed from
the initial condition. We have also investigated the numer-
ical accuracy by using the gradient indicator. The results is
similar, see in Figure 12.

The numerical results for various values of maxlev
and polynomial degree when comparing with the RKDG
method without adaptive mesh strategy are shown in Tables
XIII (error indicator) and XIV (gradient indicator). It can
be seen that for a fixed degree of polynomial, the RMS error
decreases as the maxlev increases. By fixing the polyno-
mial degree, the case of K = 100 and maxlev = 4 results
to the smallest RMS error for both the error and gradient
indicators applied. For the same values of maxlev and
K, increasing the polynomial degree from 1 to 2 results
to slighly decreasing the RMS error.

V. CONCLUSIONS

In this work, we present the adaptive RKDG method
for solving the one-dimensional advection equation, the
Burgers’ equation and the shallow water equations. We
consider the smooth initial condition and the discontinu-
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Figure 10: The comparison between the exact solution (solid line) and the approximate solution (dot line) at T = 1 for
maxlev = 2 (left), and adaptive level in the x-t plane (right) by gradient indicator.

Table XI: The RMS error using N = 1 and N = 2 with K = 50, 100, and 200 and (θ1, θ2) = (0.005, 0.0025) for wet bed
case, error indicator is applied.
maxlev K = 50 K = 100 K = 200
P 1 0.0230 0.0145 0.0088
P 1
1 0.0145 0.0088 0.0060
P 1
2 0.0111 0.0075 0.0053
P 1
3 0.0115 0.0079 0.0057
P 1
4 0.0128 0.0088 0.0056

maxlev K = 50 K = 100 K = 200
P 2 0.0184 0.0137 0.0091
P 2
1 0.0137 0.0089 0.0058
P 2
2 0.0093 0.0060 0.0043
P 2
3 0.0072 0.0050 0.0035
P 2
4 0.0067 0.0046 0.0028

Table XII: The RMS error using N = 1 and N = 2 with K = 50, 100, and 200 (θ1, θ2) = (0.005, 0.0025) for wet bed
problem, gradient indicator is applied.
maxlev K = 50 K = 100 K = 200
P 1 0.0230 0.0145 0.0088
P 1
1 0.0145 0.0088 0.0060
P 1
2 0.0111 0.0075 0.0053
P 1
3 0.0113 0.0077 0.0056
P 1
4 0.0123 0.0085 0.0053

maxlev K = 50 K = 100 K = 200
P 2 0.0184 0.0137 0.0091
P 2
1 0.0121 0.0085 0.0074
P 2
2 0.0100 0.0061 0.0043
P 2
3 0.0072 0.0049 0.0035
P 2
4 0.0063 0.0043 0.0026

Figure 11: The comparison between the exact solution (solid line) and the approximate solution (dot line) at T = 1,maxlev =
2 (left) and adaptive area (right) using error indicator.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 271



Table XIII: The RMS error using N = 1 and N = 2 with K = 25, 50, and 100 and (θ1, θ2) = (0.005, 0.0025) for dry bed
case, error indicator is applied.
maxlev K = 25 K = 50 K = 100
P 1 0.0289 0.0288 0.0154
P 1
1 0.0287 0.0154 0.0082
P 1
2 0.0265 0.0139 0.0071
P 1
3 0.0259 0.0134 0.0068
P 1
4 0.0258 0.0133 0.0067

maxlev K = 25 K = 50 K = 100
P 2 0.0489 0.0208 0.0115
P 2
1 0.0208 0.0111 0.0061
P 2
2 0.0151 0.0082 0.0043
P 2
3 0.0144 0.0076 0.0039
P 2
4 0.0140 0.0074 0.0038

Table XIV: The RMS error using N = 1 and N = 2 with K = 25, 50, and 100, (θ1, θ2) = (0.005, 0.0025) for dry bed
problem, gradient indicator is applied.

maxlev K = 25 K = 50 K = 100
P 1 0.0289 0.0288 0.0154
P 1
1 0.0287 0.0154 0.0082
P 1
2 0.0264 0.0138 0.0071
P 1
3 0.0258 0.0132 0.0067
P 1
4 0.0257 0.0131 0.0066

maxlev K = 25 K = 50 K = 100
P 2 0.0489 0.0208 0.0115
P 2
1 0.0210 0.0112 0.0061
P 2
2 0.0150 0.0080 0.0042
P 2
3 0.0141 0.0077 0.0038
P 2
4 0.0142 0.0077 0.0038

Figure 12: The comparison between the exact solution
(solid line) and the approximate solution (dot line) at T = 1
for maxlev = 2 (top), and adaptive level in the x-t plane
(bottom) by gradient indicator.

ous initial condition for the advection equation, the initial
sine wave for the Burgers’ equation, and for shallow wa-
ter equations, we consider two problems which are wet and
dry bed problems with discontinuous initial condition.

There are two types of adaptive algorithms that are the
adaptive polynomial for solving the smooth initial condi-
tion and the adaptive mesh for solving the discontinuous
initial condition. We also present two types of indicators
which are the error and gradient indicators. The indicators
are used to detect troubled cells in the computational do-
main before applying the adaptive criteria during the time
integration.

The adaptive polynomial is appropriate for increas-
ing the accuracy of numerical solutions in the case of
the smooth solutions, see the results from the advection
equation. Our presented approach can increase automati-
cally the degree of polynomial basis for troubled cells, and
revesely it can decrease automatically the degree of poly-
nomial if that cells are usual. The highest accuracy can
be obtained if the maximum degree is used. However, the
results from the adaptive polynomial for the Burgers’ equa-
tion show that increasing order of polynomial basis cannot
improve accuracy for sharp-front solution, we should apply
the adaptive mesh criteria instead of adaptive polynomial
for this case. Since solution from the shallow water equa-
tions also have sharp-front and high gradient area, then we
apply only adaptive mesh ctiteria for solving the equations.
The numerical results by the adaptive mesh method for the
advection equation, the Burgers’ equation and the shallow
water equations are presented. It is found that the solution
accuracy increases as the maximum level increases. For
these two criterias, the values of θ1 and θ2 are depended
on desired order of accuracy. Our presented adaptive mesh
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method are successfully applied to capture some shock in-
terfaces, rarefaction and high gradient areas in our model
problems.
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