

Abstract—One of the most intensively studied problems in

computational mathematics and combinatorial optimization is the
traveling salesman problem (TSP). The TSP is classified and
considered as the class of the NP-complete combinatorial
optimization problems. By literatures, many algorithms and
approaches have been launched to solve such the TSP. However, no
current algorithms can provide the exactly optimal solution of the
TSP problem. This article proposes the application of adaptive tabu
search (ATS), one of the most powerful AI search techniques, to
solve the TSP problems. The ATS is tested against ten benchmark
real-world TSP problems. Results obtained by the ATS will be
compared with those obtained by the genetic algorithms (GA) and
the tabu search (TS). As results, the ATS, TS, and GA can provide
very satisfactory solutions for all TSP problems. Among them, the
ATS outperforms other algorithms.

Keywords—Adaptive tabu search, genetic algorithm, tabu
search, traveling salesman problem.

I. INTRODUCTION
he traveling salesman problem (TSP) has been firstly
proposed as one of the mathematical problems for

optimization in 1930s [1]. The problem is to find an optimal
tour for a traveling salesman wishing to visit each of a list of n
cities exactly once and then return to the home city. Such
optimal tour is defined to be a tour whose total distance (cost)
is minimized. This problem can be considered as the class of
combinatorial optimization problems known as NP-complete
[1], [2]. By literature, many algorithms and approaches have
been launched to solve the TSP problems. Those algorithms
and approaches can be classified into exact and heuristic
approaches [3], [4], [5].

The TSP problems possessing no longer than 20 cities can
be optimally solved by exact methods. Some are dynamic
programming [6], branch and bound [7], and linear
programming [2]. The heuristic methods could provide very
satisfactory solutions of the TSP problems possessing large
amount number of cities. However, the optimum solution can

Manuscript received February 26, 2012: Revised version received February
26, 2012.

S. Suwannarongsri is with Department of Industrial Engineering, Faculty
of Engineering, South-East Asia University, Bangkok, Thailand, 10160
(corresponding author phone: 66-2807-4500; fax: 66-2807-4528; e-mail:
supaporns@sau.ac.th).

D. Puangdownreong is with Department of Electrical Engineering, Faculty
of Engineering, South-East Asia University, Bangkok, Thailand, 10160
(e-mail: deachap@sau.ac.th).

not be guaranteed. To date, the artificial intelligent (AI) search
techniques have been applied to solve the TPS problems, for
example, simulated annealing (SA) [8], artificial neural
network (ANN) [9], tabu search (TS) [10], and genetic
algorithms (GA) [11].

By literatures, the adaptive tabu search (ATS), one of the
most efficient and powerful AI search techniques, has been
launched since 2002 [12], [13]. The ATS is widely applied to
various engineering applications such as system and model
identification [14], system performance optimization [15],
assembly line balancing problem [16], surface optimization
[17], and control synthesis [18]. In this paper, the ATS is then
applied to solve ten benchmark real-world TSP problems
collected in TSPLIB95 [19]. Based on exactly optimal
solutions, results obtained by the ATS will be compared with
those obtained by two well-known AI search techniques, i.e.
the GA and TS.

This article consists of five sections. After an introduction
provided in section 1, the problem formulation of TSP
problem optimization is formulated in section 2. The ATS
algorithms as well as TS and GA are briefly described in
section 3. AI-based TSP solving is given in section 4, while
conclusions are provided in Section 5.

II. TSP PROBLEM FORMULATION
By theory, the traveling salesman problem (TSP) has been

firstly proposed as one of the mathematical problems in 1800s
by Harmilton and Kirkman. However, the general formulation
of TSP has been firstly lunched based on the graph theory in
1930s [1].

Let G = (V, E) be a complete undirected graph with vertices
V, |V| = n, where n is the number of cities, and edges E with
edge length cij for the-ij city (i, j). Our work focus on the
symmetric TSP case in which cij = cji, for all cities (i, j). The
TSP problem formulations for minimization as expressed in
(1) – (5) [2]. Equation (1) is the objective function, which
minimizes the total distance to be traveled. Constraints (2) and
(3) define a regular assignment problem, where (2) ensures
that each city is entered from only one other city, while (3)
ensures that each city is only departed to on other city.
Constraint (4) eliminates subtours. Constraint (5) is a binary
constraint, where xij = 1 if edge (i, j) in the solution and xij = 0,
otherwise.

Adaptive Tabu Search for Traveling Salesman
Problems

S. Suwannarongsri and D. Puangdownreong

T

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 274

 Min ∑ ∑
∈ ∈Vi Vj

ijij xc (1)

 Subject to Vix

ij
Vj

ij ∈=∑
≠
∈

,1 (2)

 Vjx

ji
Vi

ij ∈=∑
≠
∈

,1 (3)

 =⊂∀−≤∑ ∑

∈ ∈

SVSSx
Si Sj

ij ,,1 ∅ (4)

 Vjiorxij ∈= ,,10 (5)

However, the difficulty of solving TSP is that subtour

constraints will grow exponentially as the number of city
grows large, so it is not possible to generate or store these
constraints. Many applications in real-world do not demand
optimal solutions. Therefore, many researchers proposed
several heuristic algorithms, which are fast and easy to
implement.

III. AI ALGORITHMS
The artificial intelligent (AI) search techniques used to

solve the TSP problems in this work are the genetic
algorithms (GA), the tabu search (TS), and the adaptive tabu
search (ATS). Their algorithms are briefly reviewed as
follows.

A. Genetic Algorithm
The genetic algorithm or GA is one of AI search

optimization techniques. GA has natural selection mechanism
and genetic operation, i.e. crossover and mutation techniques
to find optimum solution. The GA algorithms can be briefly
summarized as follows [20], [21].

 Step 1. Randomly generate the populations.
 Step 2. Evaluate all population chromosomes via the

objective function.
 Step 3. Select some chromosomes and set them as parents.
 Step 4. Generate next generation of population by

crossover and mutation.
 Step 5. Evaluate the (fitness) objective function of new

populations.
 Step 6. Replace old population by new ones that more fit.
 Step 7. Once termination criteria (TC) are met, terminate

search process; otherwise go back to Step 2.

GA will stop the search process once the TC is satisfied.

Generally, we use the preset maximum generation (genmax)
and the maximum allowance of the global solution (Jmax) as
the TC. This implies that the GA search process will be
stopped, once gen = genmax or the current solution is less than
Jmax. The optimum solution is the best chromosome in current
population.

B. Tabu Search
The tabu search or TS is proposed by Glover [22], [23]. The

TS is also one of AI search optimization techniques. Based on
the neighborhood search, the TS has the tabu list (TS) used to
store the visited solutions and to conduct as an aspiration
criteria when the local entrapment occurs. The TS algorithms
can be briefly described as follows [24], [25].

 Step 1. Initialize a search space (Ω), TL = ∅, search radius

(R), count, and countmax.
 Step 2. Randomly select an initial solution S0 from a certain

search space Ω. Let S0 be a current local minimum.
 Step 3. Randomly generate N solutions around S0 within a

search radius R. Store the N solutions, called
neighborhood, in a set X.

 Step 4. Evaluate the objective value of each member in X
via objective functions. Set S1 as a member giving
the minimum cost.

 Step 5. If f(S1) < f(S0), put S0 into the TL and set S0=S1,
otherwise, store S1 in the TL instead.

 Step 6. If the TC : count= countmax or desired specification
are met, then stop the search process. S0 is the best
solution, otherwise Update count= count+1, and go
back to Step 2.

Like GA, TS will stop the search process once the TC is

satisfied. Generally, we use the preset maximum search round
or count (countmax) and the maximum allowance of the global
solution (Jmax) as the TC. This means that the TS search
process will be stopped, once count = countmax or the current
solution is less than Jmax.

C. Adaptive Tabu Search
The adaptive tabu search or ATS is the modified version of

the TS. Based on iterative neighborhood search approach, the
ATS was launched in 2004 [12], [13]. The ATS search
process begins the search with some random initial solutions
belonging to a neighborhood search space. All solutions in
neighborhood search space will be evaluated via the objective
function. The solution giving the minimum objective cost is
set as a new starting point of next search round and kept in the
tabu list (TL). Fig. 1 illustrates some movements of the ATS.
The ATS possesses two distinctive mechanisms denoted as
back-tracking (BT) regarded as one of the diversification
strategies and adaptive radius (AR) considered as one of the
intensification strategies. The ATS can be regarded as one of
the most powerful AI search techniques. Convergence proof
and performance evaluation of the ATS have been reported
[12], [13]. The ATS algorithm is summarized step-by-step as
follows.

 Step 1. Initialize a search space (Ω), TL = ∅, search radius

(R), count, and countmax.
 Step 2. Randomly select an initial solution S0 from a certain

search space Ω. Let S0 be a current local minimum.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 275

 Step 3. Randomly generate N solutions around S0 within a
search radius R. Store the N solutions, called
neighborhood, in a set X.

 Step 4. Evaluate the objective value of each member in X
via objective functions. Set S1 as a member giving
the minimum cost.

 Step 5. If f(S1) < f(S0), put S0 into the TL and set S0=S1,
otherwise, store S1 in the TL instead.

 Step 6. Activate the BT mechanism, when a local
entrapment occurs.

 Step 7. If the TC : count= countmax or desired specification
are met, then stop the search process. S0 is the best
solution, otherwise go to Step 8.

 Step 8. Invoke the AR mechanism, once the search
approaches the local or the global solution to refine
searching accuracy.

 Step 9. Update count= count+1, and go back to Step 2.

0S

1R

mR

nR

Fig. 1 some movements of ATS

The diagram in Fig. 2 reveals the search process of the ATS

algorithm. The BT mechanism described in Step 6 is active
when the number of solution cycling is equal to the maximum
solution-cycling allowance. This mechanism selects an
already visited solution stored in the TL as an initial solution
for the next search round to enable a new search path that
could escape the local deadlock towards a new local
minimum. For the AR mechanism described in Step 8, it is
invoked when a current solution is relatively close to a local
minimum. The radius is thus decreased in accordance with the
best cost function found so far. The less the cost function, the
smaller the radius. With these two features, a sequence of
solutions obtained by the ATS method rapidly converges to
the global minimum. Like TS, ATS will stop the search
process once the TC is satisfied. This means that the ATS
search process will be stopped, once count = countmax or the
current solution is less than Jmax. The following
recommendations found in [12], [13] are useful for setting the
initial values of search parameters:

Start

 Initialize parameters:
- search space ()
- tabu list (TL) =
- search radius (R)
- Count = 0
- Countmax

- Evaluate the objective value of each member
 in X via objective functions
- Set S1 as a member giving the minimum cost.

f(S1) < f(S0)
no

- Put S0 into the TL
- Set S0 = S1

yes

 Update Count=Count+1

- Randomly select an initial solution S0 from Ω
- Let S0 be a current local minimum

- Randomly generate N solutions around S0
 within Ω by R
- Store the neighborhood N solutions in a set X

- Activate the BT mechanism once a local
 entrapment occurs

- Invoke the AR mechanism when the search
 process approaches the global solution

- Store S1 in the TL

TC met ?

no

yes

- Report the
 best solution S0

Start

Fig. 2 flow diagram of ATS algorithm

(i) the initial search radius, R, should be 7.5-15.0% of the

search space radius,
(ii) the number of neighborhood members, N, should be

30-40,
(iii) the number of repetitions of a solution before invoking

the back-tracking mechanism should be 5-15,
(iv) the kth backward solution selected by the back-tracking

mechanism should be equal or close to the number of
repetitions of a solution before invoking the back-
tracking mechanism,

(v) the adaptive search radius should employ 20-25% of
radius reduction, and

(vi) a well educated guess of the search space that is wide
enough to cover the global solution is necessary.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 276

IV. AI-BASED TSP SOLVING
In this work, algorithms of the GA, TS, and ATS are coded

by MATLAB running on Pentium (R), 2.00 GHz CPU, 1 GB
RAM, to solve ten benchmark real-world TSP problems
collected in TSPLIB95 [19]. Details of selected benchmark
TSP problems are summarized in Table 1. Each problem will
be tested over 20 times to calculate the average optimum
distance and the average search time. For a fair comparison,
the search parameters of these AI algorithms will be a priory
set as follows.

For GA :
 - number of population = 100,
 - crossover = 70%,
 - mutation = 4.5%,
 - replacement with 1 point, and
 - TC : maximum generation = 2,000.

For TS :
 - Ω = [1, 2, …, No. of cities],
 - number of neighborhood members N = 100,
 - search radius R = 20% of Ω, and
 - TC : countmax = 2,000.

Table 1 selected real-world TSP problems

TSP Problems No. of Cities Opt. distance (km.)
Eil51 51 426

Berlin52 52 7,542
St70 70 675
Pr76 76 108,159
Eil76 76 538
Rat99 99 1,211
Rd100 100 7,910

KroA100 100 21,282
KroB100 100 22,141

Ch150 150 6,528

For ATS :
 - Ω = [1, 2, …, No. of cities],
 - number of neighborhood members N = 100,
 - search radius R = 20% of Ω,
 - Activate BT, when local entrapment occurs,
 - invoke AR once 20, 40, 60, and 80 times of solution

cannot be improved, and
 - TC : countmax = 2,000.

Results obtained are summarized in Table 2. We found that

GA, TS, and ATS can fine the optimum distant of all
problems. From the average optimum distance in Table 2, the
ATS outperforms other algorithms. The second is the GA, and
the third is the TS, respectively. This may because the search
process of the TS and the GA hit many local entrapments,
while the ATS can efficiently escape such the local
entrapments. Convergent curves of the cost function obtained
by the GA, TS, and ATS over the Eil51 problem are depicted
in Fig. 3 as an example. The convergence curves of other
problems are omitted because they have a similar form to
those of the Eil51. Figs. 4 – 13 depict the results of all TSP
problems obtained by the GA, TS, and ATS, respectively.

0 500 1000 1500 2000
400

600

800

1000

1200

1400

1600

Iteration

To
ta

l-d
is

t (
km

.)

ATS
TS
GA

Fig. 3 convergent rate of Eil51

Table 2 results obtained by AI search techniques

Obtained solutions (average distance (Km.)) by AI techniques average search time
(sec.) by AI TSP

problems

Opt.
distance

(km.) GA %Err TS %Err ATS %Err GA TS ATS
Eil51 426 441.46 3.63 445.05 4.47 438.12 2.85 2.72 2.53 2.91

Berlin52 7,542 7,833.26 3.86 8,152.79 8.10 7,702.16 2.12 3.58 2.15 4.14
St70 675 695.44 3.03 738.78 9.45 684.62 1.43 3.84 3.19 4.22
Pr76 108,159 116,273.12 7.50 123,240.57 13.94 110,478.35 2.14 4.13 4.05 4.57
Eil76 538 548.26 1.91 582.62 8.29 540.17 0.40 4.05 3.86 4.43
Rat99 1,211 1,274.84 5.27 1,295.42 6.97 1,213.50 0.21 6.28 5.83 7.35
Rd100 7,910 8,506.51 7.54 8,788.39 11.10 8,412.62 6.35 10.68 9.12 13.46

KroA100 21,282 22,875.42 7.49 23,644.18 11.10 21,525.56 1.14 11.97 10.89 15.13
KroB100 22,141 24,765.94 11.86 25,349.36 14.49 22,568.14 1.93 12.52 11.18 15.46

Ch150 6,528 6,986.35 7.02 7,012.21 7.42 6,612.74 1.30 14.84 12.57 16.73

 Note : %Err stands for percentage of solution errors compared with optimum distances.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 277

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Total Dist = 437.8464 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Total Dist = 442.1071 Km

X-distance (km.)
Y

-d
is

ta
nc

e
(k

m
.)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70
Total Dist = 431.1705 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

 (a) (b) (c)

Fig. 4 results of Eil51 obtained by (a) GA (b) TS (c) ATS

0 500 1000 1500 2000
0

200

400

600

800

1000

1200
Total Dist = 7739.6099 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 500 1000 1500 2000
0

200

400

600

800

1000

1200
Total Dist = 7926.9622 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 500 1000 1500 2000
0

200

400

600

800

1000

1200
Total Dist = 7544.3659 Km

X-distance (km.)
Y

-d
is

ta
nc

e
(k

m
.)

 (a) (b) (c)

Fig. 5 results of Berlin52 obtained by (a) GA (b) TS (c) ATS

0 20 40 60 80 100
0

20

40

60

80

100
Total Dist = 702.4230 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 20 40 60 80 100
0

20

40

60

80

100
Total Dist = 716.2045 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 20 40 60 80 100
0

20

40

60

80

100
Total Dist = 689.5823 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

 (a) (b) (c)

Fig. 6 results of St70 obtained by (a) GA (b) TS (c) ATS

0 0.5 1 1.5 2

x 104

0

2000

4000

6000

8000

10000

12000

14000
Total Dist = 114028.1302 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 0.5 1 1.5 2

x 104

0

2000

4000

6000

8000

10000

12000

14000
Total Dist = 118037.3096 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 0.5 1 1.5 2

x 104

0

2000

4000

6000

8000

10000

12000

14000
Total Dist = 112134.9909 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

 (a) (b) (c)

Fig. 7 results of Pr76 obtained by (a) GA (b) TS (c) ATS

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 278

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80
Total Dist = 579.9982 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80
Total Dist = 584.4896 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80
Total Dist = 562.4404 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

 (a) (b) (c)

Fig. 8 results of Eil76 obtained by (a) GA (b) TS (c) ATS

0 20 40 60 80 100
0

50

100

150

200

250
Total Dist = 1410.0661 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 20 40 60 80 100
0

50

100

150

200

250
Total Dist = 1438.6791 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 20 40 60 80 100
0

50

100

150

200

250
Total Dist = 1303.7335 Km

X-distance (km.)
Y

-d
is

ta
nc

e
(k

m
.)

 (a) (b) (c)

Fig. 9 results of Rat99 obtained by (a) GA (b) TS (c) ATS

0 200 400 600 800 1000
0

200

400

600

800

1000
Total Dist = 8622.9172 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 200 400 600 800 1000
0

200

400

600

800

1000
Total Dist = 8859.2962 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 200 400 600 800 1000
0

200

400

600

800

1000
Total Dist = 8586.9405 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

 (a) (b) (c)

Fig. 10 results of Rd100 obtained by (a) GA (b) TS (c) ATS

0 1000 2000 3000 4000
0

500

1000

1500

2000
Total Dist = 23260.4148 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 1000 2000 3000 4000
0

500

1000

1500

2000
Total Dist = 25260.8096 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 1000 2000 3000 4000
0

500

1000

1500

2000
Total Dist = 22142.2887 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

 (a) (b) (c)

Fig. 11 results of KroA100 obtained by (a) GA (b) TS (c) ATS

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 279

In Table 2, %Err standing for percentage of solution errors
compared with optimum distances are represented by the bar
graph shown in Fig. 14. This can be noticed that the ATS can
provide better solutions than the GA and TS, although it
spends larger search time than other do as shown in Fig. 15.

Fig. 14 %Err obtained by AI search techniques

Fig. 15 average search times by AI search techniques

V. CONCLUSION
Solving the traveling salesman problem (TSP) by AI search

techniques has been proposed in this article. The adaptive tabu
search (ATS), one of the most powerful AI search techniques,
has been applied to solve the TSP problems. It has been tested
against ten benchmark real-world TSP problems collected in
TSPLIB95. Based on the exactly optimal solutions, results
obtained by the ATS would be compared with those obtained
by the genetic algorithms (GA) and the tabu search (TS). As
results, the ATS, TS, and GA can provide very satisfactory
solutions for all TSP problems. Among them, the ATS can
provide the best solution within reasonable search time
consumed. This can be concluded that ATS outperforms other
algorithms used in this article.

REFERENCES
[1] M. Bellmore and G. L. Nemhauser, “The traveling salesman problem: a

survey”, Operation Research, vol. 16, 1986, pp.538-558.
[2] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson, “Solution of a large-

scale traveling salesman problem”, Operation Research, vol. 2, 1954,
pp.393.

[3] G. Reinelt, The Traveling Salesman : Computational Solutions for TSP
Applications. Springer-Verlag, 1994.

[4] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys,
The Traveling Salesman Problem : A Guided Tour of Combinatorial
Optimization, John-Wiley & Sons, 1986.

[5] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem: a
case study in local optimization”, Local Search in Combinatorial
Optimization, Wiley, 1997, pp.215-310.

0 1000 2000 3000 4000
0

500

1000

1500

2000
Total Dist = 24774.3969 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 1000 2000 3000 4000
0

500

1000

1500

2000
Total Dist = 25257.3922 Km

X-distance (km.)
Y

-d
is

ta
nc

e
(k

m
.)

0 1000 2000 3000 4000
0

500

1000

1500

2000
Total Dist = 23341.9191 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

 (a) (b) (c)

Fig. 12 results of KroB100 obtained by (a) GA (b) TS (c) ATS

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700
Total Dist = 7301.4568 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700
Total Dist = 7541.0734 Km

X-distance (km.)

Y
-d

is
ta

nc
e

(k
m

.)

0 100 200 300 400 500 600 700
0

100

200

300

400

500

600

700
Total Dist = 6899.0817 Km

X-distance (km.)
Y

-d
is

ta
nc

e
(k

m
.)

 (a) (b) (c)

Fig. 13 results of Ch150 obtained by (a) GA (b) TS (c) ATS

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 280

[6] M. Held and R. Karp, “A dynamic programming approach to sequencing
problems”, SIAM J, 1962, pp.196.

[7] J. Little, K. Murty, D. Sweeney, and C. Karel, “An algorithm for the
traveling salesman problem”, Operation Research, vol. 12, 1963,
pp.972.

[8] E. H. L. Aarts, J. H. M. Korst, and P. J. M. Laarhoven, “A quantitative
analysis of the simulated annealing algorithm: a case study for the
traveling salesman problem”, J. of Stats Phys, vol. 50, 1988, pp.189-206.

[9] J. V. Potvin, “The traveling salesman problem: a neural network
perspective”, INFORMS J. of Computing, vol. 5, 1993, pp. 328-348.

[10] C. N. Fiechter, “A parallel tabu search algorithm for large scale traveling
salesman problems”, Discrete Applied Mathematics, vol. 51(3), 1994,
pp. 243-267.

[11] J. V. Potvin, “Genetic algorithms for the traveling salesman problem”,
Annuals of Operation Research, vol. 63, 1996, pp.339-370.

[12] D. Puangdownreong, T. Kulworawanichpong, and S. Sujitjorn, “Finite
convergence and performance evaluation of adaptive tabu search”,
LNCS (Lecture Notes in Computer Science), Springer-Verlag
Heidelberg, vol. 3215, 2004, pp.710-717.

[13] S. Sujitjorn, T. Kulworawanichpong, D. Puangdownreong, and K-N.
Areerak, “Adaptive tabu search and applications in engineering design”,
Book Chapter in Integrated Intelligent Systems for Engineering Design
(ed. X.F. Zha and R.J. Howlett), IOS Press, Netherlands, 2006, pp.233-
257.

[14] D. Puangdownreong and S. Sujitjorn, “Image approach to system
identification,” WSEAS Transactions on Systems, vol. 5(5), 2006,
pp.930-938.

[15] D. Puangdownreong, C. U-Thaiwasin, and S. Sujitjorn, “Optimized
performance of a 2-mass rotary system using adaptive tabu search,”
WSEAS Transactions on Circuits and Systems, vol. 5(3), 2006, pp.339-
345.

[16] S. Suwannarongsri and D. Puangdownreong, “Metaheuristic approach to
assembly line balancing,” WSEAS Transactions on Systems, vol. 8(2),
2009, pp.200-209.

[17] J. Kluabwang, D. Puangdownreong and S. Sujitjorn, “Management
agent for search algorithms with surface optimization applications,”
WSEAS Transactions on Computers, vol. 7(6), 2008, pp.791-803.

[18] J. Kluabwang, D. Puangdownreong and S. Sujitjorn, “Performance
assessment of search management agent under asymmetrical problems
and control design applications,” WSEAS Transactions on Computers,
vol. 8(4), 2009, pp.691-704.

[19] TSPLIB95, Symmetric traveling salesman problem,
http://comopt.ifi.uni-heidelberg.de/ software/TSPLIB95/. 5 February,
2010.

[20] H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor,
The University of Michigan Press, 1975.

[21] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and
Machine Learning, Addison-Wesley Publishing, 1989.

[22] F. Glover, “Future paths for integer programming and links to artificial
intelligence”, Computers and Operations Research, vol. 13, 1986,
pp.533-549.

[23] F. Glover, “Tabu search – part I”, ORSA Journal on Computing, vol.1,
1989, pp.190-206.

[24] F. Glover, “Tabu search – part II”, ORSA Journal on Computing, vol.2,
1990, pp.4-32.

[25] F. Glover, “Tabu search for nonlinear and parametric optimization (with
links to genetic algorithms)”, Discrete Applied Mathematics, vol. 49,
1994, pp.231-255.

Supaporn Suwannarongsri was born in Bangkok,
Thailand, in 1983. She received the B.Eng. degree in
industrial engineering from Thonburi University
(TRU), Bangkok, Thailand, in 2004 and the M.Eng.
degree in industrial engineering from King
Mongkut's Institute of Technology Ladkrabang
(KMITL), Bangkok, Thailand, in 2008, respectively.

Since 2006, she has been with the Department of
Industrial Electrical Engineering, Faculty of
Engineering, South-East Asia University (SAU),

Bangkok, Thailand, where she is currently an assistant professor of industrial
engineering and Head of Department of Industrial Engineering. Her research
interests include operation research, production planning and design, and
applications of AI search algorithms to various real-world industrial
engineering problems.

Deacha Puangdownreong was born in Pranakhonsri
Ayutthaya, Thailand, in 1970. He received the
B.Eng. degree in electrical engineering from South-
East Asia University (SAU), Bangkok, Thailand, in
1993, the M.Eng. degree in control engineering from
King Mongkut's Institute of Technology Ladkrabang
(KMITL), Bangkok, Thailand, in 1996, and the
Ph.D. degree in electrical engineering from
Suranaree University of Technology (SUT), Nakhon
Ratchasima, Thailand, in 2005, respectively.

Since 1994, he has been with the Department of Electrical Engineering,
Faculty of Engineering, South-East Asia University, where he is currently an
associated professor of electrical engineering. While remains active in
research, he served the university under various administrative positions
including Head of Department of Electrical Engineering, Deputy Dean of
Faculty of Engineering, Director of Research Office, and Director of Master of
Engineering Program. His research interests include control synthesis and
identification, AI and search algorithms as well as their applications. He has
authored 3 books and published as authors and coauthors of more than 70
research and technical articles in peer-reviewed journals and conference
proceedings nationally and internationally.

Dr.Deacha has been listed in Marquis Who's Who in the World, Marquis
Who's Who in Science and Engineering, and Top 100 Engineers-2011 in
International Biographical Center, Cambridge, UK.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 2, Volume 6, 2012 281

