
 

 

  
Abstract—One of the most intensively studied problems in 

computational mathematics and combinatorial optimization is the 
traveling salesman problem (TSP). The TSP is classified and 
considered as the class of the NP-complete combinatorial 
optimization problems. By literatures, many algorithms and 
approaches have been launched to solve such the TSP. However, no 
current algorithms can provide the exactly optimal solution of the 
TSP problem. This article proposes the application of adaptive tabu 
search (ATS), one of the most powerful AI search techniques, to 
solve the TSP problems. The ATS is tested against ten benchmark 
real-world TSP problems. Results obtained by the ATS will be 
compared with those obtained by the genetic algorithms (GA) and 
the tabu search (TS). As results, the ATS, TS, and GA can provide 
very satisfactory solutions for all TSP problems. Among them, the 
ATS outperforms other algorithms. 
 

Keywords—Adaptive tabu search, genetic algorithm, tabu 
search, traveling salesman problem.  

I. INTRODUCTION 
he traveling salesman problem (TSP) has been firstly 
proposed as one of the mathematical problems for 

optimization in 1930s [1]. The problem is to find an optimal 
tour for a traveling salesman wishing to visit each of a list of n 
cities exactly once and then return to the home city. Such 
optimal tour is defined to be a tour whose total distance (cost) 
is minimized. This problem can be considered as the class of 
combinatorial optimization problems known as NP-complete 
[1], [2]. By literature, many algorithms and approaches have 
been launched to solve the TSP problems. Those algorithms 
and approaches can be classified into exact and heuristic 
approaches [3], [4], [5]. 

The TSP problems possessing no longer than 20 cities can 
be optimally solved by exact methods. Some are dynamic 
programming [6], branch and bound [7], and linear 
programming [2]. The heuristic methods could provide very 
satisfactory solutions of the TSP problems possessing large 
amount number of cities. However, the optimum solution can 
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not be guaranteed. To date, the artificial intelligent (AI) search 
techniques have been applied to solve the TPS problems, for 
example, simulated annealing (SA) [8], artificial neural 
network (ANN) [9], tabu search (TS) [10], and genetic 
algorithms (GA) [11]. 

By literatures, the adaptive tabu search (ATS), one of the 
most efficient and powerful AI search techniques, has been 
launched since 2002 [12], [13]. The ATS is widely applied to 
various engineering applications such as system and model 
identification [14], system performance optimization [15], 
assembly line balancing problem [16], surface optimization 
[17], and control synthesis [18]. In this paper, the ATS is then 
applied to solve ten benchmark real-world TSP problems 
collected in TSPLIB95 [19]. Based on exactly optimal 
solutions, results obtained by the ATS will be compared with 
those obtained by two well-known AI search techniques, i.e. 
the GA and TS.  

This article consists of five sections. After an introduction 
provided in section 1, the problem formulation of TSP 
problem optimization is formulated in section 2. The ATS 
algorithms as well as TS and GA are briefly described in 
section 3. AI-based TSP solving is given in section 4, while 
conclusions are provided in Section 5. 

II. TSP PROBLEM FORMULATION 
By theory, the traveling salesman problem (TSP) has been 

firstly proposed as one of the mathematical problems in 1800s 
by Harmilton and Kirkman. However, the general formulation 
of TSP has been firstly lunched based on the graph theory in 
1930s [1].  

Let G = (V, E) be a complete undirected graph with vertices 
V, |V| = n, where n is the number of cities, and edges E with 
edge length cij for the-ij city (i, j). Our work focus on the 
symmetric TSP case in which cij = cji, for all cities (i, j). The 
TSP problem formulations for minimization as expressed in 
(1) – (5) [2]. Equation (1) is the objective function, which 
minimizes the total distance to be traveled. Constraints (2) and 
(3) define a regular assignment problem, where (2) ensures 
that each city is entered from only one other city, while (3) 
ensures that each city is only departed to on other city. 
Constraint (4) eliminates subtours. Constraint (5) is a binary 
constraint, where xij = 1 if edge (i, j) in the solution and xij = 0, 
otherwise. 
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However, the difficulty of solving TSP is that subtour 

constraints will grow exponentially as the number of city 
grows large, so it is not possible to generate or store these 
constraints. Many applications in real-world do not demand 
optimal solutions. Therefore, many researchers proposed 
several heuristic algorithms, which are fast and easy to 
implement. 

III. AI ALGORITHMS 
The artificial intelligent (AI) search techniques used to 

solve the TSP problems in this work are the genetic 
algorithms (GA), the tabu search (TS), and the adaptive tabu 
search (ATS). Their algorithms are briefly reviewed as 
follows. 

A. Genetic Algorithm  
The genetic algorithm or GA is one of AI search 

optimization techniques. GA has natural selection mechanism 
and genetic operation, i.e. crossover and mutation techniques 
to find optimum solution. The GA algorithms can be briefly 
summarized as follows [20], [21]. 
 
 Step 1. Randomly generate the populations. 
 Step 2. Evaluate all population chromosomes via the 

objective function. 
 Step 3. Select some chromosomes and set them as parents.  
 Step 4. Generate next generation of population by 

crossover and mutation.  
 Step 5. Evaluate the (fitness) objective function of new 

populations. 
 Step 6. Replace old population by new ones that more fit. 
 Step 7. Once termination criteria (TC) are met, terminate 

search process; otherwise go back to Step 2.    
 
GA will stop the search process once the TC is satisfied. 

Generally, we use the preset maximum generation (genmax) 
and the maximum allowance of the global solution (Jmax) as 
the TC. This implies that the GA search process will be 
stopped, once gen = genmax or the current solution is less than 
Jmax. The optimum solution is the best chromosome in current 
population. 

B. Tabu Search  
The tabu search or TS is proposed by Glover [22], [23]. The 

TS is also one of AI search optimization techniques. Based on 
the neighborhood search, the TS has the tabu list (TS) used to 
store the visited solutions and to conduct as an aspiration 
criteria when the local entrapment occurs. The TS algorithms 
can be briefly described as follows [24], [25]. 
 
 Step 1. Initialize a search space (Ω), TL = ∅, search radius 

(R), count, and countmax. 
 Step 2. Randomly select an initial solution S0 from a certain 

search space Ω. Let S0 be a current local minimum. 
 Step 3. Randomly generate N solutions around S0 within a 

search radius R. Store the N solutions, called 
neighborhood, in a set X. 

 Step 4. Evaluate the objective value of each member in X 
via objective functions. Set S1 as a member giving 
the minimum cost. 

 Step 5. If f(S1) < f(S0), put S0 into the TL and set S0=S1, 
otherwise, store S1 in the TL instead. 

 Step 6. If the TC : count= countmax or desired specification 
are met, then stop the search process. S0 is the best 
solution, otherwise Update count= count+1, and go 
back to Step 2. 

 
Like GA, TS will stop the search process once the TC is 

satisfied. Generally, we use the preset maximum search round 
or count (countmax) and the maximum allowance of the global 
solution (Jmax) as the TC. This means that the TS search 
process will be stopped, once count = countmax or the current 
solution is less than Jmax. 

C. Adaptive Tabu Search  
The adaptive tabu search or ATS is the modified version of 

the TS. Based on iterative neighborhood search approach, the 
ATS was launched in 2004 [12], [13]. The ATS search 
process begins the search with some random initial solutions 
belonging to a neighborhood search space. All solutions in 
neighborhood search space will be evaluated via the objective 
function. The solution giving the minimum objective cost is 
set as a new starting point of next search round and kept in the 
tabu list (TL). Fig. 1 illustrates some movements of the ATS. 
The ATS possesses two distinctive mechanisms denoted as 
back-tracking (BT) regarded as one of the diversification 
strategies and adaptive radius (AR) considered as one of the 
intensification strategies. The ATS can be regarded as one of 
the most powerful AI search techniques. Convergence proof 
and performance evaluation of the ATS have been reported 
[12], [13]. The ATS algorithm is summarized step-by-step as 
follows. 

 
 Step 1. Initialize a search space (Ω), TL = ∅, search radius 

(R), count, and countmax. 
 Step 2. Randomly select an initial solution S0 from a certain 

search space Ω. Let S0 be a current local minimum. 
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 Step 3. Randomly generate N solutions around S0 within a 
search radius R. Store the N solutions, called 
neighborhood, in a set X. 

 Step 4. Evaluate the objective value of each member in X 
via objective functions. Set S1 as a member giving 
the minimum cost. 

 Step 5. If f(S1) < f(S0), put S0 into the TL and set S0=S1, 
otherwise, store S1 in the TL instead. 

 Step 6. Activate the BT mechanism, when a local 
entrapment occurs. 

 Step 7. If the TC : count= countmax or desired specification 
are met, then stop the search process. S0 is the best 
solution, otherwise go to  Step 8. 

 Step 8. Invoke the AR mechanism, once the search 
approaches the local or the global solution to refine 
searching accuracy. 

 Step 9. Update count= count+1, and go back to Step 2. 
 

 

0S

1R

mR

nR

 
 

Fig. 1 some movements of ATS 
 
The diagram in Fig. 2 reveals the search process of the ATS 

algorithm. The BT mechanism described in Step 6 is active 
when the number of solution cycling is equal to the maximum 
solution-cycling allowance. This mechanism selects an 
already visited solution stored in the TL as an initial solution 
for the next search round to enable a new search path that 
could escape the local deadlock towards a new local 
minimum. For the AR mechanism described in Step 8, it is 
invoked when a current solution is relatively close to a local 
minimum. The radius is thus decreased in accordance with the 
best cost function found so far. The less the cost function, the 
smaller the radius. With these two features, a sequence of 
solutions obtained by the ATS method rapidly converges to 
the global minimum. Like TS, ATS will stop the search 
process once the TC is satisfied. This means that the ATS 
search process will be stopped, once count = countmax or the 
current solution is less than Jmax. The following 
recommendations found in [12], [13] are useful for setting the 
initial values of search parameters: 

Start

 Initialize parameters:
- search space ( )
- tabu list (TL) = 
- search radius (R)
- Count = 0
- Countmax 

- Evaluate the objective value of each member 
 in X via objective functions
- Set S1 as a member giving the minimum cost.

f(S1) < f(S0)
no

- Put S0 into the TL 
- Set S0 = S1

yes

 Update Count=Count+1

- Randomly select an initial solution S0 from Ω
- Let S0 be a current local minimum

- Randomly generate N solutions around S0
 within Ω by R
- Store the neighborhood N solutions in a set X

- Activate the BT mechanism once a local 
 entrapment occurs

- Invoke the AR mechanism when the search 
 process approaches the global solution

- Store S1 in the TL 

TC met ?

no

yes

- Report the 
 best solution S0

Start
 

 
Fig. 2 flow diagram of ATS algorithm 

 
(i)  the initial search radius, R, should be 7.5-15.0% of the 

search space radius, 
(ii)  the number of neighborhood members, N, should be 

30-40, 
(iii) the number of repetitions of a solution before invoking 

the back-tracking mechanism should be 5-15, 
(iv) the kth backward solution selected by the back-tracking 

mechanism should be equal or close to the number of 
repetitions of a solution before invoking the back-
tracking mechanism, 

(v) the adaptive search radius should employ 20-25% of 
radius reduction, and 

(vi) a well educated guess of the search space that is wide 
enough to cover the global solution is necessary. 
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IV. AI-BASED TSP SOLVING 
In this work, algorithms of the GA, TS, and ATS are coded 

by MATLAB running on Pentium (R), 2.00 GHz CPU, 1 GB 
RAM, to solve ten benchmark real-world TSP problems 
collected in TSPLIB95 [19]. Details of selected benchmark 
TSP problems are summarized in Table 1. Each problem will 
be tested over 20 times to calculate the average optimum 
distance and the average search time. For a fair comparison, 
the search parameters of these AI algorithms will be a priory 
set as follows. 

 
For GA : 
 - number of population = 100, 
 - crossover = 70%, 
 - mutation = 4.5%, 
 - replacement with 1 point, and 
 - TC : maximum generation = 2,000. 
 

For TS : 
 - Ω = [1, 2, …, No. of cities], 
 - number of neighborhood members N = 100, 
 - search radius R = 20% of Ω, and 
 - TC : countmax = 2,000. 
 

Table 1 selected real-world TSP problems 

TSP Problems No. of Cities Opt. distance (km.) 
Eil51 51 426 

Berlin52 52 7,542 
St70 70 675 
Pr76 76 108,159 
Eil76 76 538 
Rat99 99 1,211 
Rd100 100 7,910 

KroA100 100 21,282 
KroB100 100 22,141 

Ch150 150 6,528 
 
 

 
 
 

For ATS : 
 - Ω = [1, 2, …, No. of cities], 
 - number of neighborhood members N = 100, 
 - search radius R = 20% of Ω, 
 - Activate BT, when local entrapment occurs, 
 - invoke AR once 20, 40, 60, and 80 times of solution 

cannot be improved, and  
 - TC : countmax = 2,000. 

 
Results obtained are summarized in Table 2. We found that 

GA, TS, and ATS can fine the optimum distant of all 
problems.  From the average optimum distance in Table 2, the 
ATS outperforms other algorithms. The second is the GA, and 
the third is the TS, respectively. This may because the search 
process of the TS and the GA hit many local entrapments, 
while the ATS can efficiently escape such the local 
entrapments. Convergent curves of the cost function obtained 
by the GA, TS, and ATS over the Eil51 problem are depicted 
in Fig. 3 as an example. The convergence curves of other 
problems are omitted because they have a similar form to 
those of the Eil51. Figs. 4 – 13 depict the results of all TSP 
problems obtained by the GA, TS, and ATS, respectively.   
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Fig. 3 convergent rate of Eil51 

Table 2 results obtained by AI search techniques 

Obtained solutions (average distance (Km.)) by AI techniques average search time 
(sec.) by AI TSP 

problems 

Opt. 
distance 

(km.) GA %Err TS %Err ATS %Err GA TS ATS 
Eil51 426 441.46 3.63 445.05 4.47 438.12 2.85 2.72 2.53 2.91 

Berlin52 7,542 7,833.26 3.86 8,152.79 8.10 7,702.16 2.12 3.58 2.15 4.14 
St70 675 695.44 3.03 738.78 9.45 684.62 1.43 3.84 3.19 4.22 
Pr76 108,159 116,273.12 7.50 123,240.57 13.94 110,478.35 2.14 4.13 4.05 4.57 
Eil76 538 548.26 1.91 582.62 8.29 540.17 0.40 4.05 3.86 4.43 
Rat99 1,211 1,274.84 5.27 1,295.42 6.97 1,213.50 0.21 6.28 5.83 7.35 
Rd100 7,910 8,506.51 7.54 8,788.39 11.10 8,412.62 6.35 10.68 9.12 13.46 

KroA100 21,282 22,875.42 7.49 23,644.18 11.10 21,525.56 1.14 11.97 10.89 15.13 
KroB100 22,141 24,765.94 11.86 25,349.36 14.49 22,568.14 1.93 12.52 11.18 15.46 

Ch150 6,528 6,986.35 7.02 7,012.21 7.42 6,612.74 1.30 14.84 12.57 16.73 

 Note : %Err stands for percentage of solution errors compared with optimum distances. 
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   (a) (b)                                                                      (c) 

Fig. 4 results of Eil51 obtained by (a) GA (b) TS (c) ATS  
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   (a)  (b)                                                                      (c) 

Fig. 5 results of Berlin52 obtained by (a) GA (b) TS (c) ATS  
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   (a)  (b)                                                                      (c) 

Fig. 6 results of St70 obtained by (a) GA (b) TS (c) ATS  
 

0 0.5 1 1.5 2

x 104

0

2000

4000

6000

8000

10000

12000

14000
Total Dist = 114028.1302 Km

X-distance (km.)

Y
-d

is
ta

nc
e 

(k
m

.)

0 0.5 1 1.5 2

x 104

0

2000

4000

6000

8000

10000

12000

14000
Total Dist = 118037.3096 Km

X-distance (km.)

Y
-d

is
ta

nc
e 

(k
m

.)

0 0.5 1 1.5 2

x 104

0

2000

4000

6000

8000

10000

12000

14000
Total Dist = 112134.9909 Km

X-distance (km.)

Y
-d

is
ta

nc
e 

(k
m

.)

 
   (a)  (b)                                                                      (c) 

Fig. 7 results of Pr76 obtained by (a) GA (b) TS (c) ATS  
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   (a)  (b)                                                                      (c) 

Fig. 8 results of Eil76 obtained by (a) GA (b) TS (c) ATS  
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   (a)  (b)                                                                      (c) 

Fig. 9 results of Rat99 obtained by (a) GA (b) TS (c) ATS  
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   (a)  (b)                                                                      (c) 

Fig. 10 results of Rd100 obtained by (a) GA (b) TS (c) ATS  
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   (a)  (b)                                                                      (c) 

Fig. 11 results of KroA100 obtained by (a) GA (b) TS (c) ATS  
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In Table 2, %Err standing for percentage of solution errors 
compared with optimum distances are represented by the bar 
graph shown in Fig. 14. This can be noticed that the ATS can 
provide better solutions than the GA and TS, although it 
spends larger search time than other do as shown in Fig. 15. 

 

 
 

Fig. 14 %Err obtained by AI search techniques 

 
 

Fig. 15 average search times by AI search techniques  

V. CONCLUSION 
Solving the traveling salesman problem (TSP) by AI search 

techniques has been proposed in this article. The adaptive tabu 
search (ATS), one of the most powerful AI search techniques, 
has been applied to solve the TSP problems. It has been tested 
against ten benchmark real-world TSP problems collected in 
TSPLIB95. Based on the exactly optimal solutions, results 
obtained by the ATS would be compared with those obtained 
by the genetic algorithms (GA) and the tabu search (TS). As 
results, the ATS, TS, and GA can provide very satisfactory 
solutions for all TSP problems. Among them, the ATS can 
provide the best solution within reasonable search time 
consumed. This can be concluded that ATS outperforms other 
algorithms used in this article. 
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Fig. 13 results of Ch150 obtained by (a) GA (b) TS (c) ATS  
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