
 

 

  

Abstract—In this paper, the performances of Markov Chain 

Monte Carlo (MCMC) method and Generalized Least Square (GLS) 

method are compared when they are used to estimate the parameters 

in a nonlinear differential model of glucose/insulin metabolism with 

GLP1-DPP4 interaction. The model is used to generate the data that 

consists of the time-concentration measurements of plasma glucose 

and of insulin, which are important in Diabetes Mellitus (DM) 

treatment. We show the results from three different runs to obtain 

parameter estimations by both MCMC and GLS. The true values 

(TV), point estimates (PM), standard deviation (SD) and 95% 

credible intervals (CI) of population parameters based on the two 

methods are presented. Our results suggest that MCMC is better able 

to estimate the parameters based upon smaller bias and standard 

deviation. Although MCMC requires more calculation time than 

GLS, it offers a more appropriate method, in our opinion, for 

nonlinear model parameter estimations without knowledge of the 

distribution of the data and when heterogeneity of variance is 

evident. 

 

Keywords—glucose/insulin metabolism, GLS, MCMC, nonlinear 

differential equations model. 

I. INTRODUCTION 

IABETES mellitus (DM) is a wide spread disease 

affecting an increasing number of people globally. It has 
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in the past been a serious health concern for the developed 

countries, but is now discovered to effect more and more the 

less developed populations. 

There are three major forms of diabetes: type 1 diabetes 

mellitus (T1DM, also known as insulin-dependent or juvenile-

onset diabetes), type 2 diabetes mellitus (T2DM, also known 

as non-insulin-dependent or maturity-onset diabetes), and 

gestational diabetes. 

The study of glucose and insulin metabolism is 

fundamental to the understanding of the mechanisms and the 

diagnosis of DM. Insulin is recognized as the central hormone 

that maintains glucose absorption by various cells, particularly 

from blood into muscular and adipose cells. Therefore, lack of 

insulin or the insensitivity of its receptors plays a central role 

in all forms of DM [1]. Gestational diabetes develops in a 

small percentage of pregnant women and usually resolves after 

parturition. T1DM affects less than 10% of diabetic people 

and is an autoimmune disease in which the destruction of 

pancreatic beta-cells causes insulin deficiency. T2DM is, 

instead, a progressive disease, typically associated with 

obesity. There are several mechanisms that can be involved in 

T2DM, such as defects in insulin receptors which lead to a 

compromised insulin sensitivity in peripheral tissues 

(peripheral insulin resistance) or in the liver (central insulin 

resistance). In peripheral insulin resistance, tissues do not 

absorb glucose properly, while in central insulin resistance, 

hepatic glucose output is not correctly inhibited leading to 

unnecessary glucose production. T2DM can also exhibit 

insulin secretion insufficiency when the pancreatic beta-cells 

are compromised. 

All these scenarios lead to an excess of glucose in the 

blood, a condition called hyperglycemia, that can lead to a 

number of dangerous consequences. Loss of electrolytes, 

dehydration, and polydipsia are caused by frequent urination, 

known as polyuria. Calorie loss influences polyphagia, 

negative nitrogen balance, acidosis, and increased depth of 

breathing [1]. These and other hyperglycemia related problems 

can eventually cause coma and death [1]. 

In order to study insulin and glucose metabolism, several 

mathematical models [2, 3, 4, 5, 6, 7] have been proposed, 
describing the effect of DM in the attempt to answer questions 

related to physiological complications. 
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In the present study, we concentrate on the roles of 

Glucagon-like peptide-1 (GLP-1) and dipeptidyl-peptidase-4 

(DPP-4) on the glucose/insulin metabolism. GLP-1 is secreted 

from the L-cells of the intestinal mucosa (mostly of the ileum) 

after meal ingestion and reduces post-prandial glycaemia, 

enhancing insulin secretion and delaying gastric emptying [8]. 

The enzyme DPP-4 is a peptidase that inactivates GLP-1 and 

rapidly reduces its circulating levels [9]. 

Here, we apply and compare two statistical methodologies 

for parameter estimation. The Markov Chain Monte Carlo 

method (MCMC), which is used in a Bayesian setting, 

implemented in the repeated measurement data framework, 

and the Generalized Least Square method (GLS), which is 

used in the classical statistical formulation, are used to 

estimate some parameters in a glucose/insulin model with 

GLP1-DPP4 interaction. 

In this study, data on a fixed number of subjects are 

generated with errors from the glucose/insulin model with 

GLP1-DPP4 interaction, when the model and its numerical 

integration are implemented in MATLAB. We focus on the 

comparison between the two procedures performed in terms of 

the point and interval parameter estimators. We apply the 

Bayesian models for the hierarchical nonlinear framework, 

which is regarded as an extension of the nonlinear regression 

models to handle data from several individuals, to provide the 

intra- and inter-individual variation.  Finally, the results are 

compared and analyzed. 

II. PROCEDURE  

A. Glucose/insulin model with GLP1-DPP4 interaction 

 We here introduce a model representing glucose and insulin 

homeostasis and accounting for the effects of GLP-1 and DPP-

4 peptides. The model is used to generate data of individual 

glucose and insulin concentrations in time. 
Glucose dynamics is described by three state variables, each 

one representing glucose in a different stage during its 

metabolism, from entering the body within the meal, to its final 

absorption into the blood stream. Glucose first appears in the 

stomach within the meal, it is then transferred to the gut (here 

the duodenum is considered), where it stimulates incretin 

(GLP-1) secretion, and finally is absorbed from the blood 

stream, where it exerts its action in stimulating insulin outflow 

from pancreatic beta-cells. Insulin, in turns, induces glucose 

absorption from peripheral tissues and inhibits hepatic glucose 

production, thus returning, in a healthy individual, plasmatic 

glucose concentration to basal levels. Insulin secretion from 

the pancreas is increased (this is why the term “incretin” is 

used) from GLP-1, which is released from the gut when 

glucose passes through it. GLP-1 is rapidly degraded from 

DPP-4, which is an ubiquitous enzyme, present in several 

forms and carrying out different actions in the body, depending 

on its location and specificity. The degradation of GLP-1 from 

DPP-4 is a safety mechanism which guarantees that, when 

glucose is not in the gut and its plasma concentration is not 

going to increase, incretins stop stimulating insulin secretion. 

Figure 1 gives a schematic description of the glucose/insulin 

interaction with GLP1-DPP4 interaction. The referenced 

mathematical model of this process is as follows. 

( )
( )

ds

dS t
K S t

dt
= − ,  0

( )
b

S t S=  (1)

 
( )
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( )
xP p

dP t
K P t T

dt
= − + , 0

( )
b

P t P=   (6) 

 where , , , ,S D G I N  and P  are, respectively: the amount of 

ingested glucose appearing in the stomach; glucose 

concentration in the duodenum; plasma glucose concentration; 

plasma insulin concentration; plasma GLP-1 concentration; 

plasma DPP4 concentration. In equation (1), the initial 

condition,
 b
S , represents the amount of ingested glucose, and 

the only term on the right hand-side represents glucose 

elimination from the stomach, where 
ds

K
 
is the transfer rate 

from the stomach to the duodenum. Equation (2) describes the 

dynamics of glucose concentration in the duodenum. The first 

term represents the entry from the stomach, while the 

elimination term is plasma absorption, 
gdK
 
being the transfer 

rate constant from the duodenum to the blood. Equation (3) 

represents plasma glucose concentration dynamics. This is 

described by: insulin-independent glucose tissue uptake, where 

xgK
 
is the glucose-dependent elimination rate constant; 

insulin-dependent glucose tissue uptake, where
 xgIK

 
is the 

second order elimination rate constant, insulin and glucose-

dependent; entry from the duodenum, where 
gV
 
in the 

denominator is the distribution volume for glucose; and the 

constant entry depending on liver release, where 
gl

T
 
is the 

constant rate of hepatic glucose production. 

Insulin dynamics is described by equation (4), the first term 

represents physiological insulin elimination, where 
xiK  is the 

disappearance rate constant. The two entries depend, 

respectively: on glucose concentration, iGT
 
being the 

production rate constant of pancreatic release of insulin due to 

glucose, and on GLP-1 stimulatory effect, where 
iGNT  is the 

rate of pancreatic release of insulin due to incretin action. 

Equation (5) represents GLP-1 dynamics, where the first 

term corresponds to the release due to glucose concentration in 

the duodenum,
 nDT

 
being the D dependent constant 

production rate. GLP-1 elimination due to DPP-4 cleavage is 

represented by the second right term, where 
xnP

K
 
is the 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 342



 

 

disappearance rate constant, GLP-1 and DPP-4 dependent. 

The physiological GLP-1 elimination is described by the third 

term where
 xnK

 
is the disappearance rate constant. A constant 

entry is also assumed, represented by the last term, where 
nT  is 

the constant production rate. 

The last equation (6) describes DPP-4 dynamics, where 

xPK
 
in the elimination term is the disappearance rate, DPP-4 

dependent, and the last term corresponds to DPP-4 production, 

where 
pT  is the appearance rate constant. 

 

 
  M 
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Fig.1 Schematic description of the glucose/insulin interaction 

with GLP1-DPP4 interaction. 
 

B. Materials and Methods 

The objective of this work is to estimate the unknown 

parameters
 gdK ,

 xgK ,
 xgIK , xiK  and 

gV  in (3) and (4), 

describing the differences over time of concentration 

measurements of plasma glucose ( )G t , and of insulin ( )I t , by 

using MCMC and GLS methods. By using MATLAB, data 

and errors for 30 subjects were generated from the 

glucose/insulin nonlinear differential equations model with 

GLP1-DPP4 interaction. The data consist of the time 

concentration measurements of plasma glucose ( )G t , and of 

insulin
 
( )I t , every 10 minutes, ranging from 0 to 300 minutes, 

during which ( )
k

G t  and ( )
k

I t  of the subject k  were found. 

Table 1 reports the definition of all the quantities in (3) and 

(4). 

Let us consider
 

( , )
kj kj k kj kj

y f t eχ χ β= + , where
 kj

y
 
denotes 

the variable concentration of the subject ; 1,2,3,...,30k k = , at 

time ; 1,2,3,...,30j j = , while χ  is equal to
 
G  for glucose or 

I  for insulin. Then,
 

( , )
kj k kj

f tχ β represents the prediction 

functions at time
 

j  for the k -th subject, which is derived 

from the numeric solution ( , )
k

f tβɶ  of the following 

differential equation model: 

0

( )( )
( ) ( ) ( ) , ( )

gd

xg xgI gl b

g

K D tdG t
K G t K I t G t T G t G

dt V
=− − + + =  (7) 

 

0

( )
( ) ( ) ( ) ( ), ( )

xi iG iGN b

dI t
K I t T G t T N t G t I t I

dt
=− + + =  (8) 

 

Table 1 Definition of the symbols in (7) and (8). 

Symbol Units Definition 

t  min Time 

( )G t  
mmol 

Amount of ingested glucose in the 

duodenum 

( )I t  pM Plasma insulin concentration 

( )N t  pM Plasma GLP-1 concentration 

( )D t  
mmol 

Amount of ingested glucose 

appearing in the duodenum 

xgK  
min

-1
 

The insulin-independent rate 

constant of tissue glucose uptake 

xgIK  
min

-1
/pM 

The insulin-dependent rate constant 

of tissue glucose uptake 

gdK  
min

-1
 

The rate constant of glucose 

absorbed from the duodenum into 

the blood 

xiK  min
-1
 

The disappearance rate constant for 

insulin 

gV  L 
The distribution volume for 

glucose 

glT  
pM/min 

The increase in plasma glucose 

concentration due to hepatic 

glucose release 

bG  mM Glycemia at 
0t  

bI  pM Insulinema at 
0t  

iGT  pM/min/mM 
The rate of pancreatic release of 

insulin due to glucose 

iGNT  pM /min/  

pM/mM 

The rate of pancreatic release of 

insulin due to GLP-1 

 

Hierarchical nonlinear models are typically applied to 

biostatistical problems. These models arise frequently in 

situations where several measurements are made on a number 

of subjects. Repeated measurements on a subject may be taken 

over time, at different analyte concentrations. The existence of 

repeated measurements requires particular care in 

characterizing the random variation in the data. In particular, it 

is important to recognize explicitly two levels of variability: 

SssgssStomach 

Duodenum 

Plasma 

Glucose 

 

Plasma 

DPP4 

Pancreas 

Plasma 

Incretin 

 
Plasma 

Insulin 
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random variation among measurements within a given subject 

(intra-individual variation) and random variation among 

subjects (inter-individual variation). 

Normally, specification of a distribution to characterize 

inter-individual variation is too difficult. There are many 

models to take into account such variation. In the present 

work, we used a Bayesian model specification to represent the 

inter-individual variation. A Bayesian nonlinear model 

involves 3 stages, according to Davidian and Giltinan [10], as 

in the following. 

Stage I   Intra-individual variation 

In this stage, we specify the mean response and variance-

covariance structure for a given subject. 

( , ) , ( ) 0, ( ) ( , )
kj kj k kj k k k k k k

kj

y f t e E e Cov e Rχ β β β β ξ= + = =  (9)                      

where

 

2 2

2 2

( , ) 0
( , )

0 ( , )

G G k kj

k k

I I k kj

f t
R

f t

σ β
β ξ

σ β
=

 
 
 

 (10) 

2 2
( , )

G I
ξ σ σ=  is the variance-covariance vector parameter, and

 

G
f  and 

I
f  are the mean responses for the glucose and insulin, 

respectively. 

Stage II   Inter- individual variation 

The second stage involves a model for variation in the 

regression parameters 
k

θ . This variation can be due to 

systematic dependence on subject characteristics, such as 

gender, age or simply to biological variability among different 

individuals. In this work, we consider the simplest case of 

linear model: 

, ~ (0, )
k k k

b b N Dθ θ= +  (11) 

where
 

log( ) log( , , , , )k k gd xg xgI xi gK K K K Vθ β= = , D  denotes 

the joint covariance matrix for all random effects; and ˆ
kβ  is 

the individual estimate for Subject k . 
Stage III  Hyperprior distribution 

The model specification is completed by an assumption of a 

distribution for all parameters in Stages 1 and 2: ,β ξ  and D : 

2 1 0 0 0* 1 * 1*~ ( , ), ~ ( ,[ ] ),( ) ~ ( , )
2 2

k
N D Wi D Gam

υ τ υ
θ θ ρ ρ σ −− −∑  

where Wi  and Gam  represent Wishart and Gamma 

distributions, respectively. 

C. MCMC Implementation 

By following the studies of Davidian and Giltinan [10], 

Gelfand et al. [11] and Wakefield et al. [12], it can be shown 

from Stages 1, 2 and 3 that the full conditional distribution-the 

distribution of the parameters-given the remaining parameters 

and the data, and for the parameters 
1

,Dθ −
 and 

2σ , may be 

written explicitly as 
1

2 2 1

1
*( , ,..., , , , ) ( ( ) , )

m G I
y D N V mD Vπ θ θ θ σ σ θ θ

−
−= +∑  (12) 

1 2 2

1
( , , ,..., , , )

m G I
D yπ θ θ θ σ σ− =  

     
1

1

*
([ ( )( ) ] , )

m
T

k k
k

Wi D mθ θ θ θ ρ ρ−

=

− − + +∑  (13) 

2

1 0

1
( , , ,..., , ) ( ( ),

2
G m G

y D Gam Nπ σ θ θ θ υ= +  

0 0
1

1
[ ( ( )) ( ( )) ])

2

m
T

k G k k G k G G
k

y f y fθ θ υ τ
=

− − +∑  (14) 

2

1 0

1
( , , ,..., , ) ( ( ),

2
I m I

y D Gam Nπ σ θ θ θ υ= +  

0 0
1

1
[ ( ( )) ( ( )) ])

2

m
T

k I k k I k I I
k

y f y fθ θ υ τ
=

− − +∑  (15) 

However, the full conditional distribution of each 
kθ , given 

the remaining parameters and the data, cannot be calculated 

explicitly but can be written up as a density function that is 

proportional to 

2 2

1

1

1
( , , , , , )

1/ 2
( , )

1
exp{ ( { }) ( , )( { })}

2

1
exp{ ( ) ( )}

2

k j G I

k k

T

k k k k k k k k

T

k k

y j i D

R

y f R y f

D

π θ θ θ σ σ
θ ξ

θ θ ξ θ

θ θ θ θ

−

−

≠ ∝

× − − −

× − − −

 

MCMC method is an algorithm for drawing samples 

{ , 1,2,...}
t

x t =  throughout the Markov chain, which has the 

posterior distribution (.)π  as its stationary distribution (.)φ . 

In the next stage, 
1t

x +  is sampled from a distribution 

1
( / )

t t
P x x+  depending only on the current stage of the chain-

t
x . Since the Markov chain is an iteration method, we have to 

start at the stage 
0

x  that makes the initial stage of its chain 

gradually forgotten; the chain will eventually converge to a 

unique (.)φ  which depends neither on t  nor 
0

x . Thus, as t  

increases, the sample points { }
t

x  will look increasingly like 

dependent samples from (.)φ . Consequently, after a 

sufficiently large number of m  iterations, the points 

{ , 1,..., }
t

x t m n= +  will be approximately dependent samples 

from (.)φ . 

There are many ways to obtain a Markov chain. In this 

work, we use the Gibbs sampling presented by Geman and 

Geman [13], to update 
1

,Dθ −
 and 

2σ , while we update 

, 1,2,...,30
k

kθ =  by using the Metropolis–Hastings algorithm 

[14, 15], because the full conditional distribution of each 
k

θ , 

inside the Gibbs sampling, given the remaining parameters and 

the data, cannot be calculated explicitly. 

The proceeding for MCMC method by using the 

Metropolis–Hastings algorithm inside the Gibbs sampling to 

draw the samples of the parameters from Bayesian posterior 

distribution is given as follows. 

(1) Start with the initial values 
 

(0) 2(0) (0) 1(0)
,( , ,Dψ σ θ −= (0)

)
Tγ  

where
  

{ , 1,2,...,30}
k

kγ θ= =  and choose (0) (0)

k
θ θ= .

 
(2) Obtain a new value 

 
( ) 2( ) ( ) 1( ) ( )

( , , , )
i i i i i T

Dψ σ θ γ−=   

from 
( 1)iψ −

 throughout the proposal distribution: 
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2( ) 2 ( 1) 1( 1) ( 1)

( ) 2( ) 1( 1) ( 1)

1( ) 1 2( ) ( ) ( 1)

~ ( / , , , )

~ ( / , , , )

~ ( / , , , )

i i i j

i i i j

i i i j

y D

y D

D D y

σ π σ θ φ

θ π θ σ φ

π σ θ φ

− − − −

− − −

− − −

 

 

(3) For ( )i

k
θ , move a chain to a new value ϕ , which is 

generated from the proposal ( 1)
( / )

i

k
q ϕ θ − , from ( 1)i

k
θ − .Evaluate 

2( ) ( ) 1 ( 1)

{ }( 1)

( 1) 2( ) ( ) 1 ( 1)

{ }

( / , , , , )
( / ) min 1,

( / , , , , )

i i i

ki

k i i i i

k k

y D

y D

π ϕ σ θ φ
α ϕ θ

π θ σ θ φ

− −

−

− − −
=

 
 
 

 

 

(4) Sample a uniform (0,1)  random variable U . If 

( 1)
( / )

i

k
U α ϕ θ −≤ , then set ( )i

k
θ ϕ= , otherwise set ( ) ( 1)i i

k k
θ θ −=  

and the chain does not move. 

 

(5) Increase i, and return to (2) until convergence is reached. 

D. GLS Procedure 

We applied GLS, which is a two-stage method, by 

following the studies of Panunzi et al. [16]. We used the first 

run of MCMC to be an initial value for this method. The 

proceeding is given as follows. 

 

Stage I 

(1) In K separate estimation procedures (where K is the total 

number of subjects), obtain preliminary estimates ( )ˆ p

k
β  for 

each subject , 1,2,...,k k K= , by using Ordinary Least Squares 

(OLS) estimator. 

(2) Calculate residuals from (1) and estimate 2 2
( , )

G I
ξ σ σ=  

minimizing the following function: 

  

30
( )

1

(log ( , )
p

k k
k

PL R β ξ
=

= ∑  

( ) 1 ( ) ( )
[ ( )] ( , )[ ( )])

p T p p

k k k k k k k k
y f R y fβ β ξ β−+ − −  

(3) Construct estimated weight matrices which depend on the 

estimated parameters
 
ξ̂
 
and ( )p

k
β :

 
( ) ˆˆ ( , )
p

k k
R β ξ . 

(4) Use the estimated weight matrices from (3), re-estimate the 

k
β  for each subject , 1,2,...,30k k =  by minimizing  

 

      
1 ( )

[ ( )] ( , )[ ( )]
T p

k k k k k k k
y f R y fβ β ξ β−− −  

The resulting estimates can be treated as preliminary estimates 

and it is possible to return to (2). The algorithm should be 

iterated at least once and for each Subject k. 
i
GLS

β  denotes the 

final estimates. 

 

Stage II 

We obtain 
i
GLS

β  from Stage I, then the population estimators 

of the vector β  and the variance-covariance matrix D
ɶ
 are 

obtained by  

30

1

1ˆ
i
GLSik

β β
=

= ∑
ɶ

 and 
30

1

1 ˆ ˆ ˆ ˆˆ ( ) ( )
( 1)

T

i i i i
GLS GLSi

D
m

β β β β
=

= − −∑
−ɶ

. 

 

III. RESULTS 

The results of MCMC application are obtained in about ten 

days. The entire run involves 20,000 iterations and the first 

5,000 iterations are considered as burn-in period, while the 

GLS application converges in 21 iterations. On the principle of 

choosing the initial values for MCMC, Gelfand [17] concludes 

that if MCMC samplers run long enough to forget its initial 

states, the results are not much difference. 

Here, we performed three runs with initial values shown in 

Table 2. In performing MCMC and GLS estimations, the 

initial values for the subject parameters and population 

parameters 
0θ and 0

k
θ  were set equal to the logarithm values 

0 0
log[ , , , , ]

k gd xg XgI xi g
K K K K Vθ θ= = . 

 

Table 3 shows the point estimates (PM) for the three runs 

based on MCMC, We can see that, the results are close to the 

true values (TV) for every parameters. Moreover, in the first 

run, the PM for each parameter has a smaller bias. Figures 2, 

3, 4, 5 and 6 show the trace of the sample values of the 

parameters , , ,
gd xg XgI xi

K K K K  and ,
g

V , respectively for three 

runs. All of them are seen to quickly settle down and stabilize. 

As for the performance of GLS shown in Table 4, while the 

PM from the first run is closer to TV but in the second and the 

third runs, they are not close to the corresponding TV for 

every parameter, for example, for the parameter xg
K  in the 

second run. So, we use the first run in Table 3 and Table 4 to 

compare the performances of MCMC and GLS. The initial 

values for the subject parameters 0

k
θ  and population 

parameters 
0θ  were set to 

0 0
log[0.05, 0.05, 0.00025, 0.025, 32.5]

k
θ θ= = . 

 

Table 5 and Table 6 summarize the results on estimation of 

population parameters based on MCMC and GLS, 

respectively. In Table 7, we present the estimates of subject-

specific individual parameters. For comparison, the true 

parameter values and estimation bias are also presented for 

each parameter. Figure 7, Figure 8 and Figure 9 show the 

curves of estimated values for Subject 1, Subject 18 and 

Subject 29, respectively. Moreover, the estimated subject 

parameters, the standard deviation (SD) and coefficient of 

variation (CV), based on MCMC method and GLS method, 

are also shown in Figure 10 and Figure 11. 

 

Table 2 The initial values for parameters in three runs of the 

MCMC and GLS sampler. 

 

Parameters Run1 Run2 Run3 

Kgd 0.05 0.1 0.004 

Kxg 0.05 0.1 0.005 

KxgI 0.0025 0.0005 0.00005 

Kxi 0.025 0.05 0.003 

Vg 32.5 60 10 
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Table 3 The true values (TV) and point estimates (PM) of 

population parameters in comparison between three runs based 

on MCMC. 

 

Parameters TV 
PM 

Run1 

PM 

Run2 

PM 

Run3 

Kgd 0.04 0.04765 0.0498 0.0485 

Kxg 0.001 0.00125 0.0048 0.0032 

KxgI 0.0001 0.000094 0.000083 0.000093 

Kxi 0.03 0.0308 0.0274 0.027 

Vg 14 16.23 16.63 16.43 

 

 

Table 4 The true values (TV) and point estimates (PM) of 

population parameters in comparison between three runs based 

on GLS. 

 

Parameters TV 
PM 

Run1 

PM 

Run2 

PM 

Run3 

Kgd 0.04 0.05463 0.0529 0.0532 

Kxg 0.001 0.00232 0.0361 0.0215 

KxgI 0.0001 0.000109 0.000093 0.000108 

Kxi 0.03 0.0312 0.0259 0.0273 

Vg 14 19.29 16.7729 16.5774 

 

 

 

 
 

Fig. 2 Sampled values for 
gd

K  from three runs of the MCMC 

method applied to the model: run1, solid line; run 2, dotted 

line; run 3 broken line. 

 
 

Fig. 3 Sampled values for 
xg

K  from three runs of the MCMC 

method applied to the model: run1, solid line; run 2, dotted 

line; run3 broken line. 

 

 
 

Fig.4 Sampled values for 
xgI

K  from three runs of the MCMC 

method applied to the model: run1, solid line; run 2, dotted 

line; run3 broken line. 

 

 
 

Fig.5 Sampled values for 
xi

K  from three runs of the MCMC 

method applied to the model: run1, solid line; run 2, dotted 

line; run3 broken line. 
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Fig.6 Sampled values for 
g

V  from three runs of the MCMC 

method applied to the: run1, solid line; run 2, dotted line; run3 

broken line. 

 

Table 5 The true values (TV), posterior means (PM), standard 

deviation (SD) and 95% credible intervals (CI) of population 

parameters based on MCMC. 

 

Parameters TV PM SD 95% CI 

Kgd 0.04 0.04765 0.0236 (0.0392,0.0561) 

Kxg 0.001 0.00125 0.00039 (0.00112,0.0014) 

KxgI 0.0001 0.000094 0.00007 (0.000069,0.000119) 

Kxi 0.03 0.0308 0.0146 (0.0256,0.0361) 

Vg 14 16.23 13.07 (11.55,20.91) 

 

Table 6 The true values (TV), point estimates (PM), standard 

deviation (SD) and 95% credible intervals (CI) of population 

parameters based on GLS. 

 

Parameters TV PM SD 95% CI 

Kgd 0.04 0.05463 0.024 (0.0460,0.0632) 

Kxg 0.001 0.00232 0.0012 (0.0018,0.0027) 

KxgI 0.0001 0.000109 0.00008 (0.000082,0.00013) 

Kxi 0.03 0.0312 0.0159 (0.0256,0.0370) 

Vg 14 19.29 14.62 (13.13,21.45) 

 

Table 7 The true values (TV), point estimates (PM) and bias 

of population parameters in comparison between MCMC and 

GLS. 

 

Parameters TV MCMC Bias GLS Bias 

Kgd 0.04 0.04765 -0.00765 0.05463 -0.01463 

Kxg 0.001 0.00125 -0.00025 0.00232 -0.00132 

KxgI 0.0001 0.000094 0.000006 0.000109 -0.000009 

Kxi 0.03 0.0308 -0.00084 0.0312 0.0013 

Vg 14 16.23 -2.23 19.29 -5.29 

 

 

 
 

Fig. 7 Glucose and insulin concentrations versus time together 

with the predicted time-curves from the glucose/insulin model 

with GLP1-DPP4 interaction for Subject 1.The solid and 

dashed lines represent estimated subject curves based on 

MCMC and GLS, respectively. The generated values for 

Subject 1 are indicated by the open circles. 

 

 
 

Fig. 8 Glucose and insulin concentrations versus time together 

with the predicted time-curves from the glucose/insulin model 

with GLP1-DPP4 interaction for Subject 18. The solid and 

dashed lines represent estimated subject curves based on 

MCMC and GLS, respectively. The generated values for 

Subject 18 are indicated by the open circles. 
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Fig.    9    Glucose and insulin concentrations versus time together 

with the predicted time-curves from the glucose/insulin model 

with GLP1-DPP4 interaction for Subject 29. The solid and 

dashed lines represent estimated subject curves based on 

MCMC and GLS, respectively. The generated values for 

Subject 29 are indicated by the open circles. 

 

IV. CONCLUSION 

The main aim of this study is to investigate the application 

of MCMC and GLS methods to estimate parameters in the 

glucose/insulin nonlinear differential model with GLP1-DPP4 

interaction. From our comparison between MCMC and GLS 

results, we observe that, in the estimations of
 gd
K , 

xg
K , 

xi
K  

and 
g

V , the bias and standard deviation for any parameters 

with the use of MCMC are smaller than with GLS. Thus, this 

indicates that MCMC performs better than GLS in estimating 

every parameter in the glucose/insulin nonlinear differential 

model with GLP1-DPP4 interaction. 

Based on the generated data, we suggest the use of MCMC 

instead of GLS for point estimation on the glucose/insulin 
nonlinear differential model with GLP1-DPP4 interaction 

because without any knowledge of the distribution of the data 

we can easily obtain more accurate posterior means through 

MCMC method than GLS method. Although, MCMC takes 

more time than GLS, MCMC would never give rise to such 

error as that arising from GLS. 

This study is expected to add to the knowledge gained by 

previous works ([2]-[6], [8], [9], [18]-[21]) and benefit 

biostatistics researchers, especially those interested in Diabetes 

Mellitus, who may be able to select the appropriate method for 

parameter estimations in their models without any prior 

knowledge of the distribution of the data and when 

heterogeneity of variance is evident. 

Mean=0.04765, SD=0.0236, CV=49.53% 

 
Mean=0.00125, SD=0.00039, CV=31.20% 

 
Mean=0.000094, SD=0.00007, CV=74.47% 

 
Mean=0.0308, SD=0.0146, CV=47.40% 

 
Mean=16.23, SD=13.07, CV=80.53% 

 
Fig. 10 The estimated subject parameters based on MCMC 

method. SD and CV=SD/PM stand for the standard deviation 

and coefficient of variation, respectively. 
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Mean=0.05463, SD=0.0236, CV=43.20% 

 
Mean=0.00232, SD=0.0012, CV=51.72% 

 
Mean=0.000109, SD=0.00008, CV=73.39% 

 
Mean=0.0312, SD=0.0159, CV=50.96% 

 
Mean=19.29, SD=14.62, CV=75.80% 

 
Fig. 11 The estimated subject parameters based on MCMC 

method. SD and CV=SD/PM stand for the standard deviation 

and coefficient of variation, respectively. 
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