

Abstract— Although smartcards are widely used, secure

smartcard interoperability has remained a significant challenge.
Usually each manufacturer provides a closed environment for their
smartcard based applications including the microchip, associated
firmware and application software. While the security of this
“package” can be tested and certified for example based on the
Common Criteria, the secure and convenient interoperability with
other smartcards and smartcard applications is not guaranteed. Ideally
one would have a middleware that can support various smartcards
and smartcard applications. In our ongoing research we study this
scenario with the goal to develop a way to certify secure smartcard
interoperability in such an environment. Here we discuss and
experimentally demonstrate one critical security problem: if several
smartcards are connected via a middleware it is possible that a
smartcard of type S receives commands that were supposed to be
executed on a different smartcard of type S’. Such “external
commands” can interleave with the commands that were supposed to
be executed on S. Here we demonstrate this problem experimentally
with a Common Criteria certified digital signature process on two
commercially available smartcards. Importantly, in some of these
cases the digital signature processes terminate without generating an
error message or warning to the user.

Keywords — Common criteria, digital signature, interoperability,
smartcard

I. INTRODUCTION

Smartcards (SC) are becoming increasingly popular in many
countries and are deployed, for example, as credit cards, health
cards [1], public transportation service cards [2] and electronic
identification documents. With these devices users control
highly sensitive information and may perform security tasks
such as mobile application security [3], electronic
authentication and digital signature [4], [5]. As the importance

Manuscript received December 28, 2011.
Maurizio Talamo is with Nestor Lab and the Department of Mathematics,

Faculty of Science, University of Rome Tor Vergata, Rome, Italy (e-mail:
talamo@nestor.uniroma2.it).

Maulahikmah Galinium is with the Department of Mathematics, Faculty
of Science, University of Rome Tor Vergata, Rome, Italy (phone: +39 06
2020 568 / +39 06 2020 561 ; fax: +39 06 20434 631; e-mail:
galinium@nestor.uniroma2.it).

Christian H. Schunck is with Nestor Lab, University of Rome Tor Vergata,
Rome, Italy (e-mail: schunck@nestor.uniroma2.it).

Franco Arcieri is with Nestor Lab, University of Rome Tor Vergata, Rome,
Italy (e-mail: arcieri@nestor.uniroma2.it).

and world-wide spread of SCs increases, the interoperability of
these devices becomes more important along with their
security in environments where SCs from different
manufacturers and issuers are used at the same time.

The Common Criteria (CC) [6] and the CWA 14169 [7]
standards are used to certify the correct behavior of a SC in a
well defined environment, i.e. for a specific target of
evaluation (TOE). The TOE is precisely described and usually
comprises a specific microprocessor, a specified firmware and
specified middleware [6]; however, environments where
different SCs are used at the same time are usually different
from the TOE. In particular, a SC could be confronted with
commands from different processes, be it accidentally, on
purpose or during an attack. Trusted SC interoperability,
therefore, requires a careful analysis of how SCs operate in
such situations and the consideration of these results in the
design of interoperable systems.

One goal of current research and development efforts
regarding SC interoperability is to create a framework that
enables the concurrent use of different SCs. These efforts
focus on diverse topics such as standardization [8], [9], [10],
architectures for SC based authentication services [11], public
key infrastructure [12], [13] and open protocols [14]. For
example reference [15] studied the SC interoperability on
public transit fare payment application using contactless SC.
The authors propose a new payment protocol to support
interoperability among different electronic purses and PSAMs
(Purchase Secure Application Module) issued by different
manufacturers.

When several SCs are connected to SC application via a
middleware commands which are supposed to be executed on
a certain SC may in fact be executed on a different one. Fig. 1
illustrates this situation: SC applications give input to and
receive an output from SCs sharing a common middleware.
The middleware translates the input into command sequences,
i.e. into straight line program (SLP) which are supposed to be
executed on a corresponding SC. The security problem
mentioned above is indicated in the figure by the dashed
arrows: commands interleave between the straight line
programs. As a result a command may be executed on a SC
different from the intended one. While such situations may
arise inadvertently due to potential errors in the middleware
such vulnerabilities can also be exploited in an attack. From a

Interleaving Commands: a Threat to the
Interoperability of Smartcard Based Security

Applications

Maurizio Talamo, Maulahikmah Galinium, Christian H. Schunck, Franco Arcieri

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

76

security perspective such events are particularly problematic if
the SC executing a misdirected command does not
immediately return an error message. We have observed this
problem experimentally [4] and refer to such a situation as an
``anomaly''.

Fig. 1 Middleware

However, interoperability problems emerge already with the

attempt to recognize what type of SC is actually used. In
practice, this is currently done by detecting the presence of
certain applications on the SC [16]. Deducing the SC type
from such information is, at its best, an indirect method which
might not uniquely identify the SC type, and leave it prone to
potential attacks. If the SC type is incorrectly identified,
"external commands" will be sent to the SC. Here, we define
an "external command" as an Application Protocol Data Unit
(APDU) sequence that does not correspond to the regular
APDU sequence supplied to the SC in the executable code of
the middleware originally used during the security certification
(e.g. according to CC). In a setting where different SCs
interact with applications via a middleware, APDUs that are
supposed to be delivered to a certain SC type S might be
received by a SC of type S' (e.g., due to routing errors). In
such situations "external commands'' can interleave with
regular commands.

References [17], [18] study the behavior of commercial
signature SCs during the sequential steps of a digital signature
process. First the APDUs sent - in the setting used for the CC
certification - from the middleware to the SC were identified.
Using a model checking approach, the SCs were then targeted
with modified APDUs during the digital signature process of a
fixed document. The experiments showed that certain modified

commands are accepted by the SCs without errors being
generated and demonstrated that CC certification is not
sufficient to address the SC interoperability problem.

In this paper we address the problem of interleaving
commands for SC interoperability by analyzing the situation in
which different applications interact with SCs via a
middleware. A CC certified digital signature process on a
commercially available SC is then tested to demonstrate the
relevance of this problem experimentally. Finally, we discuss
the complexity of the underlying issues and how the
experimental test setup may be improved in the future to
identify and prevent potential interoperability problems of this
kind.

II. THE INTEROPERABILITY PROBLEM: INTERLEAVING

COMMAND SEQUENCES

 To address the interoperability problem on a fundamental
level, we consider a straight-line program P1 with steps S1,1,
S1,2, ..., S1,l. It is assumed that the straight line program P1 has
been certified to produce a correct result if the sequence of
commands C1,1, C1,2, ..., C1,l originally associated with these
steps is executed in the correct order and without
modifications on a SC of type S. For example, the command
sequence C1,1, C1,2, ..., C1,l could match the one supplied to S
in the executable code of the middleware that was used for CC
certification. We call a command Ci,j “globally legal” if it is
processed in step Si,j of program Pi on SC of type S and the
process Pi has been certified on S.
 In an environment where several applications interact with
SCs via a middleware, commands from another straight line
program P2 may interleave with the commands from P1 on S.
Here P2 is a straight line program for another SC type S' with
steps S2,1, S2,2, ..., S2,k and commands C2,1, C2,2, ..., C2,k . Fig. 2
illustrates the situation and shows how SC S receives
interleaving commands associated with different steps of the
two digital signature processes P1 and P2.

Fig. 2 Two Concurrent Signing Sessions

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

77

 We will now analyze this SC interoperability problem in
more detail, and in particular we distinguish the following
cases:

1) In step S1,j of P1, SC S receives command C1,j and
processes it without error. The digital signature process makes
a correct transition to step S1,j+1.

2) In step S1,j of P1, SC S receives command C2,i
corresponding to step S2,i of P2 and correctly generates an
error. At this point the error can be detected and the digital
signature process can be interrupted.

3) In step S1,j of P1, SC S receives command C2,i

corresponding to step S2,i of P2 and processes it without
generating an error, i.e. the SC recognizes this command as
“locally legal” . However, in this case, C2,i is not globally
legal. We refer to this situation as an “anomaly” since it is
unknown how the overall signature process will be affected.
The program may now potentially make a transition to any
step of the two programs P1 or P2.

 Fig. 3 shows the first case that simply describes the correct
process P1 without interleaving commands from process P2.

Fig. 3 Correct Process

 Fig. 4 illustrates the second case: the digital signature
process P1 is interrupted by another process P2, but an error is
generated and this error can be detected by the middleware.
The process P1 can be terminated in this case. The
interoperability environment can then be designed to handle
such situations appropriately.
 The third possibility (see fig. 2), however, poses the real
problem for trusted SC interoperability: the “certified” and,
therefore, trusted process has been modified but no error
message has been generated. One anomaly can potentially be
followed by several others and finally the digital signature
process may terminate with a questionable result. Without
receiving an error or a warning, a user cannot know whether
all steps in the digital signature process were completed
correctly or whether there have been one or more anomalies.

Fig. 4 An interleaving command results in an error

 In the following we demonstrate experimentally, with a
commercially available Common Criteria certified SC for
digital signature, how commands from a different straight line
program may interleave with the original one. Furthermore, we
present one example where even though an error is generated
an external command that intersects the original program can
render a SC inappropriate for further use. The testing
environment developed for this purpose, as well as relevant
details about SCs are described in the next section.

III. THE TESTING ENVIRONMENT

 In our experiments, we study two commercially available
SCs from two different manufacturers. The core of a SC is its
microprocessor, which contains on board, a cryptographic
processor, a small EEPROM random access memory (≈64
KBytes), an operating system and a memory mapped file
system [19]. The microprocessor is customized (masked) in
order to execute APDU sent from external software
applications through a serial communication line.
 The ISO 7816 standard [8], specifies the set of APDU that
can be implemented by any compatible SC microprocessor. In
particular, an APDU consists of a mandatory header of 4
bytes: the Class Byte (cla), the Instruction Byte (ins) and two
parameter bytes (p1, p2). The header can be followed by a
conditional body of variable length, which is composed by the
length (in bytes) of the data field (lc), the data field itself and
the maximum number of bytes expected in the data field of the
response (le). Responses to any APDU are encoded in a
variable length data field and two bytes mandatory return
codes.
 To probe and analyze the SC behavior we have developed a
Crypto Probing System (CPS) whose overall architecture is
shown in fig. 5. As each SC uses a different APDU sequence
in the digital signature process, the CPS is designed to
interface with both SCs used in this project. Effectively, it
therefore acts as a middleware between the external
applications and the real SCs.
 The CPS is able to translate its simplified instructions to the
corresponding sequence of APDUs (cla, ins, p1, p2, length and
values of the possible annexed data buffer) to be sent to the

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

78

connected physical SC and to translate the SC responses in a
common format. Moreover, to further simplify the interface
with the SC, the CPS is given the globally legal APDUs to be
sent in each step of the digital signature process (SC
commands flow), and the CPS is able to generate alternate
command sequences to test the SC responses in different
situations. This way, the CPS offers a simple interface for
testing applications verifying process correctness and
robustness on different physical devices and in the presence of
interleaving command sequences.

Fig. 5 Architecture of the Crypto Probing System

 The CPS can be invoked via command line, to interactively
test the command sequences, or used as a daemon, which stays
in execution and accepts commands on TCP/IP connections.
The commands sent via command line are parsed and
interpreted by the CPS based on SC library. The elementary
instruction of the CPS is made by a single APDU.
 To meet the requirements of a complete digital signature
process, globally legal APDUs for the Infineon-CardOS SC
involve the following steps:

• step 0 Reset the SC
• step 1 Change directory to the Master File or root

directory of the SC file system (SELECT FILE
command)

• step 2 Activate the security environment for the digital
signature (MSE-Manage Security Environment
RESTORE command)

• step 3 At file system level, choose the private key to be
used into the activated security environment (MSE
SET command)

• step 4 Transmit the PIN connected to the private key
used for the digital signature operation (VERIFY PIN
command)

• step 5 Compute and send the data buffer ciphered using
the selected private key and receive the result
signature (PSO CDS - Perform Security Operation
Compute Digital Signature command)

 Globally legal APDUs for the Incrypto SC involve the
following steps [5]:

• step 0 Reset the SC

• step 1 Change directory to the Master File or root
directory of the SC file system (SELECT FILE
command)

• step 2 Change to subdirectory containing the digital
signature certificate will be used (SELECT FILE
command)

• step 3 Activate the security environment for the digital
signature (MSE-Manage Security Environment
RESTORE command)

• step 4 At file system level, choose the private key to be
used into the activated security environment (MSE
SET command)

• step 5 Ask the SC for the random number that will be
used as challenge for the next commands. It is first
step for the activation of Secure Messaging (GET
CHALLENGE command)

• step 6 Transmit a random number to the SC as a
challenge for the next commands. It is the second step
for the activation of Secure Messaging (GIVE
CHALLENGE command)

• step 7 Transmit, using the two random number
previously exchanged and ciphering 3DES with the
shared 3DES key, the PIN connected to the private
key used for the digital signature operation (VERIFY
PIN command)

• step 8 Ask the SC for the random number that will be
used as challenge for the next commands. It is first
step for the activation of Secure Messaging (GET
CHALLENGE command)

• step 9 Transmit a random number to the SC as a
challenge for the next command. It is the second step
for the activation of Secure Messaging (GIVE
CHALLENGE command)

• step10 Compute and send, using the two random
numbers previously exchanged and ciphering 3DES
with the shared 3DES key, the data buffer ciphered
using the selected private key and receive the result
signature (PSO CDS - Perform Security Operation
Compute Digital Signature command)

IV. RESULTS

 In this section we present the main experimental results of
this work. We use the CPS testing environment to show how
external commands interleave with the globally legal
commands in a SC based digital signature process. The
experiments are carried out with two Common Criteria
certified SCs from STM-Incrypto34 and Infineon-CardOs
[20], [21]. The main results are shown in figs. 6, 7, and 8 and
tables I - IV. The left (right) column of fig. 3 presents the 10
(5) steps of the digital signatures processes with the Incrypto
(Infineon) SCs (see section III for the details). Note that we do
not count the initial “RESET” and have given similar steps in
both processes the same label, although the APDUs associated
with these steps may be different.
 P2 represents the digital signature process associated with
the Infineon SC and the globally legal APDUs of each step are
given in table I (here RN is short for “random number”). Fig. 6

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

79

and table II show how the commands “Get Challenge” and
“Give Challenge” from steps (1,5) and (1,6) from process P1
interleave with steps (2,1) to (2,5) of process P2 on the
Infineon SC (central column in fig. 3). No error message is
generated, and the process P2 terminates as if no interference
occurred. In fact, our experiments show that “Get Challenge”
and “Give Challenge” commands of process P1 can interleave
with process P2 before and after all of its steps. In this case, the
interleaving commands of two globally legal digital signature
processes create a result whose trustworthiness has not been
assured. Because a user cannot distinguish this situation from
one in which no anomaly occurred, this problem might
undermine the overall trustworthiness of SC use in an
interoperable environment. Furthermore, sending the “Get
Challenge” and “Give Challenge” commands repeatedly to the
SC could be used by an attacker to put a digital signature
process effectively on hold.

Fig. 6 Two Concurrent Signing Session, Infineon Smartcard

TABLE I
GLOBALLY LEGAL APDUS OF PROCESS P2 IN FIG. 3 (HEXADECIMAL

REPRESENTATION)

Node Commands Globally legal APDUs

cla ins p1 p2 lc data le

2,1 Master File 00 A4 00 00 00 - FF

2,2 MSE Restore 00 22 F3 30 00 - 00

2,3 MSE Set 00 22 F1 B6 05 4D 00 83
01 31

00

2,4 Verify 0C 20 00 90 04 PIN 00

2,5 PSO_CDS 0C 2A 9E 9A 75 00-74 FF

TABLE II
GLOBALLY LEGAL AND MODIFIED APDUS OF PROCESS P2 IN FIG. 3

(HEXADECIMAL REPRESENTATION)

Node Commands Globally legal and modified APDUs

cla ins p1 p2 lc data le

2,1 Master File 00 A4 00 00 00 - FF

2,2 MSE Restore 00 22 F3 30 00 - 00

2,3 MSE Set 00 22 F1 B6 05 4D 00 83
01 31

00

1,5 Get
Challenge

00 84 00 00 00 - 08

1,6 Give
Challenge

80 86 00 00 08 RN 00

2,4 Verify 0C 20 00 90 04 PIN 00

2,5 PSO_CDS 0C 2A 9E 9A 75 00-74 FF

The results shown in fig. 4 were obtained with the Incrypto

SC. As above, P1 represents the digital signature process
associated with this SC and the globally legal APDUs of each
step are given in table III. Process P2 contains APDUs that are
either slightly or substantially different from the globally legal
APDUs in P1 (see table IV, the modified parts are printed in
bold font). In particular, certain APDUs are not documented
for the Incrypto SC: these APDUs are therefore labeled as
“undefined”. The exact sequence of APDUs in P2 is not part of
a single digital signature process on any SC we are aware of.
Nevertheless, these commands could well be part of such
processes implemented on one or several different SCs.

The command sequence executed in our experiments is
shown in the central column of fig. 7. Although this executed
process contains six additional commands (five of them
“undefined”) and four modified commands, it terminates
without any error message. In addition, the sequence can be
looped back to the first node (1,1) “Master File” after any step
of the executed process and afterwards continue until the end.
These examples show how drastically digital signature
processes can be modified via interleaving commands without
the associated anomalies being recognized. An interoperable
environment that does not address this issue may not be
considered trustworthy and may have vulnerabilities that
potential attackers could seek to exploit.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

80

Fig. 7 Two Concurrent Signing Session, Incrypto Smartcard

TABLE III

GLOBALLY LEGAL APDUS OF PROCESS P1 IN FIG. 4 (HEXADECIMAL

REPRESENTATION)

Node Commands Globally legal APDUs

cla ins p1 p2 lc data le

1,1 Master File 00 A4 00 00 00 - FF

1,2 Change Dir 00 A4 00 00 02 14 00 FF

1,3 MSE Restore 00 22 F3 03 00 - 00

1,4 MSE Set 00 22 F1 B6 03 83 01 10 00

1,5 Get

Challenge

00 84 00 00 00 - 08

1,6 Give

Challenge

80 86 00 00 08 RN 00

1,7 Verify 0C 20 00 9A 08 PIN 00

1,8 Get

Challenge

00 84 00 00 00 - 08

1,9 Give

Challenge

80 86 00 00 08 RN 00

1,10 PSO_CDS 0C 2A 9E 9A 75 00-74 FF

 TABLE IV
GLOBALLY LEGAL AND MODIFIED APDUS OF THE EXECUTED PROCESS OF

FIG. 4 (HEXADECIMAL REPRESENTATION)

Node Commands Globally legal and modified APDUs

cla ins p1 p2 lc data le

1,1 Master File 00 A4 00 00 00 - FF

2,k Undefined1 81 86 00 00 02 14 00 00

2,k+1 Undefined2 8F 86 00 00 02 14 00 00

2,k+2 Give
Challenge

80 86 AC 45 08 RN 00

1,2 Change Dir 00 A4 00 00 02 14 00 FF

2,l Undefined1 81 86 00 00 02 14 00 00

1,3 MSE
Restore

00 22 F3 03 00 - 00

1,4 MSE Set 00 22 F1 B6 03 83 01 10 00

2,m Get
Challenge

00 84 BD 17 00 - 08

2,m+1 Give
Challenge

80 86 AC 45 08 RN 00

1,7 Verify 0C 20 00 9A 08 PIN 00

2,n Undefined3 8C 86 00 00 02 14 00 00

2,n+1 Get
Challenge

00 84 BD 17 00 - 08

2,n+2 Give
Challenge

80 86 AC 45 08 RN 00

1,10 PSO_CDS 0C 2A 9E 9A 75 00-74 FF

2,p Undefined3 8C 86 00 00 02 14 00 00

 Finally, we would like to point out a problem caused by
interleaving commands that has considerable consequences
even though an error is generated. In this experiment (shown
in fig. 8 and table V), P2 contains the “MSE Erase” command.
This command is usually not part of a digital signature process
as it erases the Security Environment Object (SEO); however,
it is conceivable that this command is used by an application

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

81

interacting with the middleware for some purpose. It may then
accidentally, or even in an attack, interleave with a digital
signature process like P1. We observe experimentally that
“MSE Erase”, executed as shown in the central column of fig.
8, erases the SEO on the SC without warning, and the digital
signature process generates an error after the next step S1,3.
The digital signature function of the SC is herewith
permanently destroyed and a physical replacement of the SC is
required. In principal, such vulnerability could be
systematically exploited in an attack on all SCs issued by the
digital signature service provider because neither PIN nor
PUK is required to execute the “MSE Erase” command.

Fig. 8 Signing session with interleaving “MSE Erase” command

TABLE V
MODIFIED APDUS OF PROCESS P2 IN FIG. 5 (HEXADECIMAL REPRESENTATION)

Node Commands Modified APDUs

cla ins p1 p2 lc data le

1,1 Master File 00 A4 00 00 00 - FF

1,2 Change Dir 00 A4 00 00 02 14 00 FF

2,k MSE Erase 00 22 F4 03 00 - 00

1,3 MSE Restore 00 22 F3 03 00 - 00

MSE Restore returns ERROR, process is terminated

V. CONCLUSION

The experiments described above show that the problem of
interleaving command sequences is serious and that it must be
addressed to ensure a secure and trustworthy environment for
SC interoperability.

As stated in the introduction, in previous work [17], [18] a
C-Murphi model checker [22] has been used to test SC
behavior in the presence of disturbed commands. Model
checking can address extended systems which can assume
millions of different states [23] and can in principal be used to
identify anomalies. However, the complexity of the
verification increases exponentially if interleaving commands
are to be taken into account: assume that for every step of two
digital signature processes, the input command has only a 16
bits and assume that the two signature processes consist of 10
steps each. Even under this strong simplification, a brute force
model checker may be required to make more than

1616
10
20 2*

+

 tests. This is due to the fact that in this approach

all possible sequences that can be obtained by mixing the two
signature processes are generated. Note that in an
interoperable environment, possibly tens, if not hundreds, of
applications may interact concurrently with various SC types
via some middleware. As a result, a brute force model
checking approach is clearly not a viable solution, especially if
it is operated on real SCs as illustrated in the experiments
described above where the execution of a single command can
take up to 1 second.

In future research, we plan to extend the model checking
approach to avoid brute force testing and to identify errors and
anomalies effectively. This can be done if one prevents the
model checker from searching through all possible sequences
of anomalies and errors by taking the results of the already
existing CC certification into account. Such an efficient model
checker can then be integrated into a middleware as a “watch-
dog” to identify an anomaly as it occurs and to prevent
computational chains with two or more anomalies. In this case,
it will be possible to extend the Common Criteria to certify the
anomaly-free interoperability of several SC applications
interacting via a middleware with different SC types.
conclusion section is not required. Although a conclusion may
review the main points of the paper, do not replicate the
abstract as the conclusion. A conclusion might elaborate on the
importance of the work or suggest applications and extensions.

REFERENCES

[1] N. G. Olve, V. Vimarlund, M. Agerbo, “Evaluation as multi-actor trade-
off – a challenge in introducing ICT innovations in the health sector”, in
Proceedings of the 4th WSEAS International Conference on E-
Activities, Miami, Florida, USA. WSEAS 2005, pp. 31-48.

[2] C. Popescu, A. Mitu, D. Uta, “Impact measurement for Civitas Success
project”, in Proceedings of Recent Researches in Urban Sustainability
and Green Development, the 2nd International Conference on Urban
Sustainability, Cultural Sustainability, Green Development, Green
Structures and Clean Cars (USCUDAR ‘11), Prague, Czech Republic.
WSEAS, 2011, pp. 166-171.

[3] C. Toma, M. Popa, C. Boja, “Smart Card based Solution for Non-
Repudiation in GSM WAP Applications”, in WSEAS Transactions on
Computers, issues 5, vol.7. WSEAS 2008, pp. 453-462.

[4] M. Talamo, M. Galinium, C. H. Schunck, F. Arcieri, “Interleaving
Command Sequences: a Thread to Secure Smartcard Interoperability”,
in Proceedings of the 10th International Conference on Information
Security and Privace (ISP’11), Jakarta, Indonesia. WSEAS 2011, pp.
102-107.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

82

[5] M. Talamo, M. Galinium, C. H. Schunck, F. Arcieri, “Integrating
Secure Messaging into OpenSC”, in the 2nd International Conference
on Computer and Management (CAMAN 2012), IEEE, to be published.

[6] Common Criteria for Information Technology Security Evaluation,
version 3.1, Common Criteria Std. CCMB-2009-07-001, CCMB-2009-
07-002, CCMB-2009-07-003, Rev. 3 FINAL, 2009.

[7] Secure signature-creation devices “EAL 4+”, European Committee for
Standardization (CEN) Std. CWA 14169, 2004.

[8] Identification cards – Integrated circuit cards Part 4: Organization,
security and commands for interchange, , International Organization for
Standardization Std. ISO/IEC 7816-4:2005, Jan. 2005.

[9] Identification cards – Integrated circuit cards programming interfaces
– Part 3: Application programming interface, International
Organization for Standardization Std. ISO/IEC 24727-3:2008, Dec.
2008.

[10] T. Schwarzhoff, et al, “Government smart card interoperability
specification, version 2.1”, United Stated of America National Institute
for Standards and Technology (NIST), Tech. Rep. 6887, 2003.

[11] A. Tauber, B. Zwattendorfer, T. Zefferer, Y. Mazhari, and E.
Chamakiotis, “Toward interoperability: An architecture for pan-
European eid-based authentication services”, in EGOVIS 2010, 2010,
pp. 120-133.

[12] A. Kazerooni, M. Adlband, O. Mahdiyar, “Application of Public Key
Infrastructure in E-Business”, in Proceedings of Recent Researches in
Applied Informatics & Remote Sensing, 7th WSEAS International
Conference on Applied Computer Science, Penang, Malaysia. WSEAS
2011, pp. 189-193

[13] M. Y. Siyal, “A Biometric Based E-Security System for Internet-based
Applications”, in Proceedings of the 2002 WSEAS International
Conference on Electronics, Control & Signal Processing and WSEAS
International Conference on e-activities, Singapore. WSEAS 2002.

[14] T. Cucinotta, M. Di Natale, and D. Corcoran, “A protocol for
programmable smart cards”, in Proceedings of the 14th International
Workshop on Database and Expert Systems Applications (DEXA03).
IEEE Computer Society, 2003.

[15] S. Lee, Y, Kim, J. Cho, K. Jung, “An Interoperable Payment Protocol for
the Public Transit Fare Payment System”, in Proceedings of the 2002
WSEAS International Conference on Information Security,
Hardware/Software Codesign, E-Commerce and Computer Networks,
Rio de Janeiro, Brazil. WSEAS, 2002, pp. 1441-1445.

[16] D. Hüehnlein and M. Bach, “How to use iso/iec 24727-3 with arbitrary
smart cards”, in TrustBus 2007, ser. LNCS vol. 4657. Springer Verlag,
2007, pp. 280-289.

[17] M. Talamo, et al, “Robustness and interoperability problems in security
devices”, in Proceedings of 4th International Conferences on
Information Security and Cryptology (INSCRYPT) 2008, 2008.

[18] M. Talamo, et al, “Verifying extended criteria for interoperability of
security devices”, in Proceedings of 3rd International Symposium on
Information Security, IS08, ser. LNCS vol. 5332. Springer, 2008, pp.
1131-1139.

[19] W. Rankl and W. Effing, Smart Card Handbook, 4th ed. West Sussex,
UK: Wiley, 2010.

[20] Siemens, “Certification report cardos v4.2 cns with application for
digital signature.”

[21] Secure Signature Creation Device Incrypto34v2 from ST INCARD S.r.l,
Bundesamt für Sicherheit in der Informationtechnik Std. BSI-DSZ-CC-
0202-2005, 2005.

[22] G. Della Penna. (2005, Aug.) The CMurphi Verifier. [Online].
Available: http://www.di.univaq.it/gdellape/murphi/cmurphi.php.

[23] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. The MIT
Press, 1999.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 6, 2012

83

