
 

 

  
Abstract— Detection of atrial fibrillation in HRV signals needs  

analysis of irregular time series. Standard time domain and spectral 
method are not sufficient. We applied three new methods of time 
series analysis – symbolic method, fractal method, and empirical 
mode decomposition. Our method enables distinguishing atrial 
fibrillation, atrial flutter, and sinus rhythm, and are helpfull in 
tracking irregular heart rate activity.   
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I. INTRODUCTION 
Typical diagnosis of atrial fibrillation, AF, is based on 12-

leads ECG. AF usually narrow QRS complexes and causes 
irregular RR intervals. The last feature allows the use of heart 
rate variability, HRV, for the diagnosis of atrial fibrillation 
and then for assessing the progress of treatment. However, 
statistical and spectral methods, which are commonly used to 
analyze the HRV signal can not cope with irregularity of RR 
series [1], [2]. We propose three new methods of HRV 
analysis for diagnosis of AF – symbolic method, method 
based on Higuchi’s fractal dimension, and method applying 
empirical mode decomposition.  

The calculations was based on the data from PhysioNet [3] 
and the data received from G.Varoneckas from Klaipedia 
Hospital in Lithuania (NHL) (cf. [4]).  

 

II. NEW METHOD OF SYMBOLIC ANALYSIS  OF HEART RATE 
VARIABILITY IN ATRIAL FIBRILLATION   

A. Method 
The symbolic methods proposed in this work and modified 

spectral methods are based on the same idea of tracking trends 
in acceleration and de-acceleration of heart rate. Those trends 
are non-symmetric [5], [6]. When the rhythm is abnormal 
asymmetry between these trends is disappearing.  
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The time series of RR intervals is encoded into a series of 
symbols.  For the series of RR intervals x(i) we calculate the 
first range differences and represent them by the symbols from 
the two-elements set  {0,1}: 
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As a result of signal’s encoding we obtain a series of  

symbols, P, for example 

     [1,1,1,0,0,1,1,1,1,0,0,1,1,1,0,0,0,0,1,1,1,11,1,0,0,0,0,0,0,0] 

In such a series symbol “0” represents acceleration of the 
heart rhythm - negative value of the first range difference 
corresponds to shortening of the successive RR intervals, 
while  symbol “1” represents de-acceleration of the heart 
rhythm.  

Symbolic series P contains tuples consisted of identical 
symbols - mono-sequences. They correspond to periods of 
heart rate acceleration (these composed of “0”’s) or to periods 
where heart rhythm de-accelerates or does not change   (these 
composed of  “1”’s). By calculating the cardinalities, L, of 
such mono-sequences  in  P we obtain a pattern of rhythm 
changes in the analyzed signal. 

In our approach we calculate cardinality only of mono-
sequences of length two - [00] and [11]. These mono-
sequences dominate the distributions of mono-sequences, so 
called seq-spectra [7], both for atrial fibrillation (Fig. 1.) and 
for sinus rhythm (Fig. 2.).    

 Due to non-stationarity of the analyzed signals cardinality 
calculation  is done using technique of double windowing. The 
string of symbols P is divided into windows of chosen length. 
In order to improve the resolution the consecutive windows 
are overlapped. Each of these windows is divided into sub 
windows of two symbols each and cardinalities of tuples [00] 
and [11] are calculated. This method of calculation allows to 
take into account the contribution of long mono-sequences to 
the calculated cardinality. For example, mono-sequence of 
length 4 is represented by two mono-sequences of length 2, 
mono-sequence of length 6 by the three mono-sequences of 
length 2, etc.  

The cardinality L[00] is the characteristic of acceleration 
trend in HRV and the cardinality L[11] is the characteristic of 
de-acceleration  (slowing down) trend in HRV. 
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Fig. 1. The seq-spectrum of RR series of atrial fibrillation activity 
            (data from NHL). 
 

 
  Fig. 2. The seq-spectrum of RR series of sinus rhythm 

         (data from NHL). 
 
For assessing asymmetry of these trends we define point-to-

point distance, D, between curves of cardinalities  L[00]  and  
L[11]: 

          [ ] [ ]1100 iii LLD −=            (2) 

 

B. Results 
We studied 12 cases of HRV with atrial fibrillation from 

NHL, 6 with restored sinus rhythm, 5 mixed cases with AF, 
SR end AFL. The quinidine was used to restore sinus rhythm 
in six cases. HRV records for five cases contains sinus 
rhythm, atrial fibrillation and atrial flutter. The data were 
analyzed using moving window 200 samples (RR intervals) 
width that was shifted by 10 samples in each consecutive step. 

For atrial fibrillation activity difference between sec-
spectrums of symbol “0” and seq-spectrum  of symbol “1” is  
small (Fig.1).  The curves of cardinalities  L[00]  and  L[11] 
are also close to one another (Fig. 3.). The point-to-point 
distances are less then 10. The asymmetry between the trends 
is weak for atrial fibrillation. The average distance  D  for 12 
cases of AF is  3.31±0.35. 

      
 

 
 
Fig. 3. The atrial fibrillation in pictures of cardinalities, L[00] and 

L[11] (upper) and point-to-point distance, D, between L[00] and 
L[11] (bottom). 

 
  

The seq-spectra of symbols “0” and “1”  differ significantly  
for the sinus rhythm (Fig. 2). The cardinality characteristics 
L[00] and  L[11] for SR are clearly separated (Fig. 4.). The 
distance D varies from 1 to 25.  The average distance D for 6 
cases of  restored sinus rhythm  is  9.89±2.45.    

   
 

 
Fig. 4.  The restored sinus rhythm. The cardinalities L[00] and 

L[11] (upper)  and distance D  (bottom). 
 
 
Fig. 5. shows results for HRV containing atrial fibrillation 

activity and sinus rhythm onset after 75 minutes of recording. 
The mixed HRV studied by us contained sinus rhythm, atrial 
fibrillation activity and atrial flutter. The average distance, D, 
for 5 cases of mixed activity is  5.38±0.57.  
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Fig. 5.  Atrial fibrillation and onset of sinus rhythm. The 

cardinalities L[00] and L[11] (upper) and distance D (bottom). 
 
 

III. ASSESSING  CARDIOVASCULAR REACTION TO 
ANTIARRHYTHMIC DRUGS USING HIGUCHI'S FRACTAL 

DIMENSION 
 

A. Method 
The algorithm to calculate fractal dimension of a time series 

directly in time domain was proposed by T.Higuchi [8]. It is a 
fast and easy method for fractal dimension calculation. This 
methods is widely used in the analysis of biomedical signals[  
(cf. [9], [10]).  Here we investigate whether Higuchi's fractal 
dimension, Df  , of HRV signal can be used to evaluate system 
response to cardiovascular pharmacological treatments in 
patients with cardiac arrhythmia.  

We analyzed HRV signals of patients with cardiac 
arrhythmias who at the time of the signal recording, has 
intravenously administered antiarrhythmic drug (isuprel or 
adenosine). When there was no body's response to the drug 
administered at the moment t1 it was administered again at  t2.  
Arrhythmias were classified as atrial fibrillation (AF) or atrial 
flutter (AFL). For each case Higuchi's fractal dimension was 
calculated with window=100 and window=50 samples. Other 
input parameters of method were the same for both cases, 
window shift = 1, kmax = 10. The size of the window used for 
analysis has an impact on further results interpretation. For 
evaluation of cardiovascular effects of antiarrhythmic drugs 
only patients with sinus rhythm and patients exclusively with 
atrial fibrillation were considered. Statistical analysis of the 
average fractal dimension to determine the variability in these 
groups was performed. The minimum average value of Df   in 
the group with atrial fibrillation has been taken as the 
threshold for response assessment of the cardiovascular 
system. If the fractal dimension dropped below this value, it 
was considered to be the reaction to the antiarrhythmic drug. 
Otherwise it was just as a distortion, or as a result of atrial 
fibrillation. 

 

B. Results 
Data from three groups of patients were used for analysis. 

The first group consisted of patients with cardiac arrhythmias, 
the second of patients with sinus rhythm and the third of 
patients with atrial fibrillation. We analyzed the data from 
PhysioNet and from NHL.. From the PhysioNet web page we 
got  Normal Sinus Rhythm RR Interval Database (NSRRRID) 
and Atrial Fibrillation and Intracardiac Database (IAFD). The 
first one includes the beat annotation files for 54 long-term 
ECG recordings of subjects in normal sinus rhythm (30 men, 
aged 28.5 to 76, and 24 women, aged 58 to 73). The original 
ECG recordings (not available) were digitized at 128 samples 
per second. The second database consists of endocardial 
recordings from the right atria of 8 Patients in atrial fibrillation 
(6 Patients) or flutter (2 Patients). One record contains both 
atrial fibrillation and atrial flutter. Each record contained eight 
signals from different electrodes (intracardiac: CS12 - CS90, 
or ECG: I, II, V1, aVF). Each signal was sampled at 1 kHz 
with 14-bit resolution. Record from the electrode aVF was 
selected for further analysis. During these records, patients 
iaf1, iaf2, iaf6, and iaf8 received adenosine, and patients iaf3, 
iaf4, iaf5, and iaf7 received isuprel. The case iaf4 was 
excluded fromanalysis due to adverse drug effect. The length 
of RR segments were calculated as the distance between the 
normal heart beats and corrected using ecgpuwave and wave 
software from PhysioNet. Ectopic beats were treated as 
normal. Data from NHL include already calculated RRs of 14 
patients with atrial fibrillation. 

The average fractal dimension calculated with window = 
100 for all cases of a group of patients who received 
antiarrhythmic drugs varied from 1.935 to 1.988 (Table 1). 
Healthy patients have an average Df   in the range from 1.568 
to 1.888. The threshold of response assessment of the 
cardiovascular system was adopted at the level of 1.95. This is 
due to the variability of average fractal dimension for a group 
of NHL. For these data the average fractal dimension is in the 
range from 1.947 to 1.996. Evaluation threshold is used to 
eliminate the interference effect and the typical dynamics of 
fractal dimension for the arrhythmia. In all analyzed cases, Df   
decreases below the threshold following administration of the 
drug. Then reaches a minimum value of Df  (Table 2.).. 
Differences in the time between drug administration and Df   
falling below the threshold ( t1 - Df react   or  t2 - Df react )    if 
the medication was given for the second time) range from 24 s 
to 621 s (Table 2.). The longest time differences are for cases 
when isuprel was administered (from 120 s to 621 s). 
However, visual analysis of HRV signal shows clear and 
quick response of the cardiovascular system to the applied 
drug - increase of heart rate (Fig. 6.). The differences are 
smaller for the cases when adenosine is administered (from 
24. sec. to 54. sec.). Reducing the window for fractal 
dimension calculation to 50 resulted only in small changes of 
the results, like e.g. performance for the case No. 7 response 
time is not 395 but 320 s (Fig. 7.), for the case No. 8 there is a 
slight decrease in Df   in the wake of the first injection (Fig. 8.).  
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Table  1: Fractal dimension statistics for each group 

 
 
 
Table  2: Specification of IAFD data 

 
 

 
Fig. 6.  Isuprel injected at 94. and 214. sec. (vertical lines);  top - 

HRV of the patient with atrial flutter; bottom - Df   calculated with 
window = 100  

 
Fig. 7.  Isuprel injected at 341 sec. (vertical line); top - HRV of the 

patient with atrial fibrillation and atrial flutter diagnosis; middle - Df   
calculated with window = 100; bottom - Df   calculated with window = 
50 

 

 
 
Fig. 8.  Adenosine injected at 120. and 261. sec (vertical lines);  

top - HRV of the patient with atrial flutter diagnosis; middle - Df   
calculated with window = 100; bottom - Df   calculated with window = 
50 
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 We have shown that  Df   is very close to 2 in the cases of 
HRV signal disturbance caused by arrhythmias. In all 
analyzed cases Df decreases below the adopted threshold 
following an assessment of antiarrhythmic drug administration 
to the patient. The dose proved ineffective, the weaker 
reaction of fractal dimension to the drug. Df   is reduced if the 
heart rhythm is back to sinus rhythm. For healthy persons Df   
is much smaller. Intravenous drug administration induces 
rapid response of the cardiovascular system that may be seen 
in HRV signal and is reflected in fractal dimension of the 
signal, namely in decrease of Df  . Sensitivity to changes in the 
HRV signal can be adjusted by changing window length - the 
smaller is the window the more sensitive to change in HRV 
signal the method is. However, use of small window makes 
the method more sensitive to interference.  

 

IV. DISTINGUISH ATRIAL FIBRILLATION OR FLUTTER  
 FROM  NORMAL  SINUS  RHYTHM USING  

SLIDING WINDOW EMPIRICAL MODE DECOMPOSITION  
 

A. Method  
Empirical Mode Decomposition (EMD) is a new method of 

breaking down a nonstationary, multicomponent signal into its 
monocomponents, method developed by Norden E. Huang 
[11]. EMD is an entirely data-driven algorithm and it does not 
depend on any predefined basis function. Such 
monocomponents are called Intrinsic Mode Functions (IMFs); 
HRV signals are usually very large data sets. Using EMD 
algorithm for analyzing such signals is time consuming or 
even impossible in a reasonable time.  We modified  EMD  
algorithm by using small sliding window (Sliding Window 
EMD, SWEMD). Since it is a new method we explain it below. 
 

1) Intrinsic mode functions 

EMD decomposes signal into, so called, intrinsic mode 
functions (IMFs). IMF is a signal that fulfills the following 
conditions:   

• the number of extrema and the number of zero crossings 
of IMF are the same or their difference is at most 1,  

• the signal has ``zero mean'' - the mean value of the 
envelope determined by maxima and the envelope 
defined by minima is equal 0 at every point.  

 Above conditions give us an idea of EMD: non-stationary 
signal is decomposed into stationary, symmetric signals which 
are quite easy to analyze. 

 
2) EMD Algorithm 

EMD  algorithm  [11], [12] is shown as a block diagram in 
Fig. 9.  The main step (Fig. 10) of EMD is extraction of 
extrema from original signal x(t) end creation of the upper 
envelope maxe  by cubic spline interpolation of maxima and of 

the lower envelope mine  by interpolation of minima. Then the 
mean value  of  two envelopes is calculated: 

 

 
 

Fig. 9.  Block diagram of EMD algorithm 
 
 

.
2

=)( minmax eetm +

 
 

This mean value is subtracted from the original data: 
 

).()(=)(1 tmtxtimf −  
 

This procedure is named sifting process. 
In ideal case )(1 timf  could be IMF, but usually it is still 

asymmetric signal. In such a case we need to repeat above 
procedure with )(1 timf  treated as input data for next sifting 

process, so mean value m(t) of envelopes of )(1 timf  is 

calculated and this value is subtracted from )(1 timf : 

),()(:=)( 11 tmtimftimf −  

where =:' ′  means ‘ becomes equal’ i.e. the right-hand side is 
substituted for what has been the left-hand side. 

This procedure is repeated till )(1 timf  satisfies conditions 
of IMF signal ( 0)( ≈tm ). After extraction of the first IMF 

original data is reduced by )(1 timf : 
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Fig. 10. Main steps of EMD: a) start of decomposition, b) end of 

decomposition of first IMF, c) start of second IMF decomposition. 
 

).()(=)( 1 timftxtr −  

The residue )(tr  is treated as input data for extraction of 
the next IMF (next sifting loop). Procedure is looped to obtain 
all IMFs.  Decomposition is finished when the  residue: 

modecurrentitimftrtr iii −−− )()(=)( 1  

has less than three extrema or all its points are equal zero. 
Summing of all IMF components and the residue gives back 

the original analyzed signal: 

modesofnumberntxtimfr i
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i
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3) Hilbert-Huang spectrum 

Signal decomposed into IMFs can be easily displayed as 
time-frequency characteristic by obtaining Hilbert-Huang 
spectrum. First step is to create analytic signal for each 
decomposition mode: 

))(()(=)( timfiHtimftimf kkka +  

 where ))(( timfH k  is the Hilbert transform of the k-th  
IMF. From analytic signal we can obtain instantaneous 
amplitude as a module of this signal: 

)(=)( timfta
kak  

and instantaneous frequency as a differential of argument of 
this signal: 

.
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The instantaneous frequencies and amplitudes of all modes 
give so called Hilbert-Huang spectrum, HHS: 
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With HHS, we can calculate the marginal Hilbert-Huang 
spectrum. It gives information about the contribution of the 
spectrum to the total amplitude (energy) and is defined as 
follows: 

∫
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4) Sliding Window Empirical Mode Decomposition 

 

 
 

 
Fig.  11. Block diagram of SWEMD algorithm 
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Sliding Window Empirical Mode Decomposition, SWEMD  
(cf. Fig. 11.) is based on calculation of EMD in a small sliding 
window.  Size of the window depends on frequency of the 
signal - there must be at least 5 maxima and 5 minima in the 
window for correct spline interpolation. In such case either 
number of IMF's and sifting steps must be set a priori to 
prevent possible discontinues between windows [2]. Number 
of modes depends on nonstationarity of the signal, in this case 
we decomposed HRV signal into 5 IMF's. The number of 
sifting steps is determined automatically by the decomposition 
of the first few windows of the signal by classic algorithm and 
counting the average number of sifting steps for each mod. 

To eliminate possible boundary effects surroundings points 
are added to the beginning and end of the window and 
SWEMD sifting process is done on the window and 
surroundings part of the data. After obtaining the mode in 
current iteration, data corresponding to the window are 
extracted and stored in the  IMF's array with proper time 
index. It may occur (especially for modes containing low 
frequencies) that the window size is too small for spline 
interpolation (not enough extremas) so there is need to set 
different window sizes for each mode. In our algorithm it is 
done automatically, only  ‘default'  window size is set. The  
array Ind  (Fig. 11.) stores time indexes of the window's 
beginning in current iteration. If the mode was extracted 
successfully this index is increased and the window for this 
mode is moved forward in the next iteration. If there was not 
enough extremas, the sifting process is canceled and the index 
of the window's beginning for current mode does not changed 
so in the next iteration the window is enlarged two times. 

 
 

B. Results 
We analyzed data from NHL - 10 cases of sinus rhythm, 12 

cases of atrial fibrillation and 3 cases of atrial flutter. 
.In order to calculate the frequency characteristics using 

SWEMD the HRV signal must be transformed: on the x-axis 
we mark the time of the heartbeats, on the y-axis - length of 
subsequent RRs. Such transformed signal is interpolated with 
spline functions. Marginal Hilbert-Huang  spectra computed 
for three group using SWEMD are shown on Fig. 12. There are 
clear differences in the shape and in the amplitude between 
these spectra. Therefore, as the parameters characterizing each 
group we propose to use the following factors:  

  
• Low-Frequency factor, LF , determining low-frequency 

contribution (0-0.025 Hz) to the whole spectrum 
(0-0.5 Hz): 

,
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where hhs(f) denotes the marginal Hilbert-Huang spectrum,  
 

• Mid-Frequency factor, MF , determining mid-frequency 
contribution (0.025-0.1 Hz) to the whole spectrum 
(0-0.5 Hz): 
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Fig. 12.  Marginal Hilbert-Huang spectrum for a normal rhythm, 
atrial fibrillation, and atrial flutter.groups. 
 

 
 

Fig. 13. Mean values and standard errors of the frequency 
coefficients for normal heart rhythm, atrial fibrillation, and atrial 
flutter 
 

Fig. 13. shows statistically significant differences in the 
values of these coefficient between the analyzed groups. 
Frequency coefficients correctly classify analyzed groups 
(Fig. 14.). Cases of normal heart rhythm and atrial fibrillation 
are at opposite areas of the chart, and the cases of atrial flutter 
fall in between.. 
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Fig.  14.  Classification of arrhythmia using the coefficients  LF 

and MF. 

 

V. CONCLUSIONS 
We described a new symbolic method of analysis of HRV 

signals based on cardinalities of two types of mono-sequences, 
that correspond to accelerating  and de-accelerating trends in 
heart rate. The  lack of asymmetry between these trends 
indicates atrial fibrillation activity. It is manifested by 
similarity of the characteristics L[00] and L[11]  and their 
mean values. Presented method may be very helpful in 
distinguishing atrial fibrillation activity and sinus rhythm and 
it allows to track irregular heart rate activity.  

Our study also shows that Higuchi’s fractal dimension can 
quantitatively assess reaction of cardiovascular system to 
antiarrhythmic drug therapy. Effective dose of intravenous 
antiarrhythmic drug induces rapid response of cardiovascular 
system that may be observe in fractal dimension of HRV 
signal. Calibration capabilities of this method are presented.  

Our results also indicate that proposed Sliding Window 
Empirical Mode Decomposition method is a promising 
method for distinguishing atrial fibrillation or flutter from the 
normal sinus rhythm. Significant difference is noticed in value 
of low-frequency and mid-frequency factors between analyzed 
groups. Unfortunately, a small amount of subjects (in 
particular cases, atrial flutter) can not definitively confirm the 
effectiveness of the method, however, presented results are 
very promising. 

Summarizing, the proposed new nonlinear methods of heart 
rate variability analysis may be quite helpful in diagnostics of 
atrial fibrillation. They may also find other clinical 
applications in Cardiology and in other fields of Medicine. 
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