
 

 

 

Abstract—We compare four paradigms that have recently been 

the subject of recent research: mobile agents, distributed shared 

memory (DSM), coordination paradigms, and self-migrating 

computations.  We place these paradigms in a common framework 

and demonstrate that self-migrating computations subsume the other 

three paradigms in terms of their capabilities to organize and 

coordinate computation, and map the concurrent activities onto a 

multicomputer architecture. We then demonstrate the advantages of 

self-migration in terms of algorithmic integrity, performance, the 

ability to generate parallel programs, and the ability to support 

incremental parallelization.  

 

Keywords—Coordination, DSM, mobile agents, parallel and 

distributed computing, self-migrating computations.  

I. INTRODUCTION 

OBILE agents, distributed shared memory (DSM), 

coordination paradigms, and self-migrating threads 

represent four lines of research that have each gained 

considerable attention in recent years. Mobile agents provide 

autonomous service entities capable of roaming 

communication networks in search of information and 

services. DSM aims at providing an abstraction for distributed 

memory computers such that applications could be written 

using shared memory programming paradigms. Coordination 

paradigms also focus on providing structured abstractions of 

the data or information space but, in addition, provide new 

conceptual models for expressing concurrency and 

coordination among the activities operating on the structured 

logical space. While these three research areas appear to be 

unrelated, there are similarities among them that are best 

understood by examining them in a common framework 

together with self-migrating threads. Self-migrating threads 

navigate through a logical space, based on their own internal 

program and state, and collectively solve a global problem 

through their individual efforts.  The self-migrating threads 

draw heavily on ideas from the other three areas [1]. 

Self-migrating computations offer several important 

advantages over the other paradigms. Specifically, (1) they 
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allow certain sequential computations to run faster by 

distributing the underlying data; (2) they facilitate the 

parallelization of sequential algorithms by preserving the 

essential structure of the original computations; (3) they lead 

to the parallelization of certain algorithms traditionally 

considered unparallelizable; and (4) they lend themselves to 

incremental parallelization of sequential programs. 

II. FOUR PARADIGMS 

A. Mobile Agents 

Mobile agents are self-contained entities that can navigate 

autonomously through the underlying network and perform a 

variety of tasks in the nodes they visit. Fig. 1(a) captures the 

essence of most mobile agent systems, which focus on the 

following major aspects: 

 

1) The computational model underlying mobile agents 

system is similar to a multithreaded environment, where 

individual threads consist of a program and a state, and 

communicate with one another via shared or distributed 

memory mechanisms. The main extension to this model is 

navigation. The computational model provides special 

commands or other linguistic constructs that enable agents 

to relocate themselves or their clones to other physical 

nodes in the network and to continue executing in the new 

environment. 

2) To serve a useful function, a mobile agent must be able to 

interact with the environment of the host on which it 

currently resides. This is accomplished by providing an 

interface to the host's operating system, which permits the 

agent to access data and/or invoke services available on 

the current host.  

3) To permit autonomous navigation, a layer of software 

consisting of daemons is superimposed on the underlying 

physical network. The task of each daemon process is to 

receive agents, interpret their behavior, and send them on 

to other daemons as necessary. The daemons themselves 

have no intelligence; all functionality is carried as part of 

the mobile agents.  The daemons use existing physical 

links to communicate with one another. Hence the 

mapping of resulting daemon network onto the physical 

network is trivial; the former is a subset of the latter as 

determined by the user. 
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A number of mobile agent projects have been carried out in 

recent years [2, 3, 4, 5]. Most focus on “intelligent” agents, 

i.e., those that can serve as personal assistants, roaming the 

Internet and perform arbitrarily complex services on behalf of 

their users. One of the first proposals was Telescript [6], which 

was centered on the design of a special-purpose language for 

expressing agents’ behaviors, including their ability to move 

themselves around the Internet. More recent approaches rely 

on existing languages, such as Java (used by IBM Aglets [7]) 

or Tcl/Tk (used by Agent Tcl [8] and Tacoma [9].)  

Another focus of mobile agent research has been on 

intelligent communication. This is best represented by the 

Messenger projects of the U. Geneva [10]. Mobile agents are 

viewed as “prototypic” mobile agents on top of which more 

complex “intelligent” agents can be built. The objective of this 

project is to replace traditional messages and communication 

protocols by mobile agents.   

There are a number of advantages of mobile agents over 

traditional approaches. First, they offer a more natural 

metaphor for both users and programmers in that they replace 

the traditional client/server or send/receive points of view by 

self-contained activities that encapsulate both communication 

and remote computing. A second advantage is the inherently 

open-ended nature of mobile agents, which permits new 

functionality to be introduced at runtime as needed. Finally, 

mobile agents can significantly reduce message traffic in 

client/server type applications. Instead of engaging in a 

bandwidth and latency intensive message exchange with a 

server, the client may dispatch an agent to the server site, 

which performs all the necessary interactions locally. When 

the task is completed, it reports the answer to the original 

client. Hence only a single “round trip,” traveled by the object, 

is necessary between the client and the server. 

The heavy lines of Fig. 1(a) indicate the emphasis of 

mobile-agent system on the agents' navigational capabilities, 

the daemon infrastructure, including its mapping to the 

physical network, and the agents' interface to the host's 

environment.  

B. Distributed Shared Memory 

Distributed shared memory (DSM) systems provide the 

illusion of a common shared memory on a multi-computer, 

where each node only has a private local memory and can 

communicate with other nodes via a network or a switch.  Fig. 

1(b) captures the essence of most DSM systems, indicating the 

main emphasis of this line of research: 

1) The shared space provided by a DSM system is a passive 

component, which is accessed by the various applications 

running on the system.  The organization and structure of 

the shared logical space is what distinguishes different 

DSM approaches.  These represent the trade-offs between 

the system’s expressiveness and the resulting 

performance. 

2) The implementation provides the mapping of the logical 

space onto the physical architecture. Its complexity 

depends on the size of the semantic gap that must be 

bridged. 

One of first approaches to providing DSM was based on 

Fig. 1 Comparison framework. (a) Mobile agents. (b) DSM. (c) Coordination paradigms. (d) Self-migrating computations 
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paging [11]. Similar to a paged-based virtual memory in a 

single-processor system, the virtual shared space is partitioned 

into fixed-size pages. However, instead of moving them 

between primary and secondary memory as needed, they are 

moved between different processors. A number of 

implementations have been proposed to keep track of the 

migrating pages to facilitate performance while ensuring that 

memory consistency is not violated. 

The above approach to DSM guarantees sequential memory 

consistency, which is the most convenient from the 

programming point of view but also the most costly to 

implement.  Other approaches have taken a more restricted 

view of what a DSM is to gain better performance [12].  These 

restrictions require the memory consistency model to be 

weakened.  For example, a causally consistent DSM 

guarantees that different processes see only causally-related 

accesses to the shared variables in the same order, while 

causally-unrelated accesses may be observed in a different 

order. In addition, the view of the shared memory may change. 

That is, instead of providing a one-dimensional flat sequence 

of data locations, thus mimicking the view of physical RAM, 

the shared portion may be restricted to only certain variables 

or data structures. In this case, special synchronization 

primitives are typically provided, with the understanding that 

the consistency of the shared data is guaranteed only in 

conjunction with these primitives. For example, release and 

entry consistency guarantee a consistent view of shared data 

only when a critical section is exited or entered, respectively. 

Regardless of the particular scheme or implementation, the 

focus of all DSM-based schemes is the logical space 

organization and its mapping onto the underlying physical 

architecture, as shown by the heavy lines of Fig. 1(b). 

C. Coordination Paradigms 

Coordination paradigms are closely related to DSM and it is 

difficult to draw a clear line between the two research thrusts.  

We characterize coordination paradigms as approaches that go 

significantly beyond the scope of DSM by addressing not only 

the aspect of space but also integrate its operational aspects 

into a common model: 

1) Like DSM, coordination paradigms provide the 

abstraction of a logical space, which consists of data and 

possibly functions, and which is structured specifically to 

facilitate the development of distributed applications.  

Unlike DSM, it is not always the data that is brought 

transparently to the current processes or thread as needed. 

Rather, a coordination paradigm may support the ability 

of an activity to relocate itself to another (physical or 

logical) domain to gain access to some data.  

2) In addition to the above spatial aspect, coordination 

paradigms also incorporate a temporal aspect by 

providing specific mechanisms or constructs to operate on 

the logical space, thus coordinating the concurrent 

activities comprising the computation. These, in general, 

are closely integrated with the logical space. They 

typically include mechanisms for controlling 

synchronization, communication, and creation/destruction 

of the computational activities required to orchestrate the 

operation of a complex system.  Hence, from the 

programming point of view, coordination paradigms may 

be viewed as extensions of the DSM concept. 

The two abstract layers, which are the main focus of all 

coordination paradigms (as indicated by heavy lines of Fig. 

1(c)), are then mapped onto the underlying computational 

structure—a network or a multiprocessor.  The mapping, 

however, is typically outside of the scope of the coordination 

paradigm. 

A large number of coordination paradigms have been 

proposed and developed in recent years, which can be 

subdivided into several broad categories. One approach to 

coordination utilizes channel-based communication between 

processes.  Processes communicate directly with each other by 

reading from and writing to ports.  Ports of processes are 

connected to ports of other processes via channels. This 

approach leads to a clean separation of computation and 

coordination functions.  An example of the channel-based 

approach is the IWIM model [13].  

Another approach to coordination is medium-based 

coordination.  At a very abstract level, all medium-based 

approaches to coordination work on the same principle.  There 

is a common medium or state space, shared by the processes.  

Processes can modify the state space, and these modifications 

affect the behavior of other processes.  Computation is 

performed by the processes, and coordination is achieved 

through the shared state space.   

One of the most prominent examples of the medium-based 

approach is Gamma [14], based on a chemical reaction 

metaphor.  The state space is a multiset of objects. Gamma 

programs consist of matched (reaction conditions, action) 

pairs.  Execution proceeds by replacing a collection of objects 

that satisfy a reaction condition by the result of applying the 

corresponding action.  As programs are executed, they may 

cause multiset transformations that create the reaction 

conditions necessary to allow other programs to execute.   

Another well-known example of coordination through a 

shared state space is the Linda system [15].  The state space is 

a pool of data called a tuple space.  Processes may insert, read, 

and remove tuples from the tuple space using various 

primitives.  They may also spawn new activities that leave new 

tuples in the tuple upon their termination. Processes select 

tuples associatively, by issuing requests for tuples that match 

certain templates. 

In the Linda model, the state space is shared by all 

processes.  PoliS [16] is an enhancement to the basic model 

intended to simplify the design of distributed systems.  PoliS 

allows multiple named tuple spaces, called places, where each 

tuple belongs to exactly one tuple space.  The execution 

threads in PoliS are autonomous active tuples, called agents.  

Because agents are tuples, an agent belongs to exactly one 

tuple space.  An agent can read tuples inside its own tuple 

space and can write tuples to any tuple space. These simple 
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operations provide a uniform approach to spawning new 

activity, the migration of such activities, and the exchange of 

information among them. 

Yet another approach to coordination is to provide 

templates for common communication patterns [17] or to 

provide an API that allows the composition of applications 

from exiting building blocks [18]. 

Despite the significant differences among the various 

coordination paradigms, they all share the common 

characteristics captured by the two highlighted layers of Fig. 

1(c).  

D. Self-Migrating Computations 

MESSENGERS [19, 20, 21, 22] is a system based on the 

principles of self-migrating threads, called Messengers. The 

system distinguishes three separate levels of networks. The 

physical network is the underlying computational resource. 

The daemon network is a collection of Unix processes, whose 

task is to interpret the behavior of the self-migrating threads.  

The logical network is an application-specific computation 

network created at run time on top of the daemon network. 

Multiple logical network nodes may be created on the same 

daemon network nodes, thus running on the same physical 

node, and they may be interconnected by logical links into an 

arbitrary topology. 

The self-migrating threads navigate through the logical 

network based on their own internal program and state. They 

are also capable of cloning themselves, both implicitly and 

explicitly, to follow multiple links or to perform different 

subtasks. This is accomplished by explicit navigational 

statements, which also permit the creation or destruction of 

logical links and/or nodes. A number of optional parameters 

may be specified as part of the navigational statements, 

including the specification of particular nodes, or links. Wild 

cards may also be used for partial matching. The self-

migrating thread is replicated and propagated to all 

destinations that match the navigational specification. 

Self-migrating threads may also perform arbitrary 

computations in the nodes they visit. This can take two forms. 

First, the object's internal program may contain computational 

statements, which permit arbitrary arithmetic, logic, and 

control operations to be performed. Second, the objects may 

invoke ordinary C functions as part of their behavior or spawn 

complete programs as separate concurrent Unix processes. The 

system also supports implicit mapping of the logical network 

onto the daemon network. 

III. ADVANTAGES OF SELF-MIGRATION 

The use of explicit commands to support the migration of 

computations leads to a new style of programming, referred to 

as Navigational Programming (NavP) [23]. Using this 

paradigm, a distributed computation is not viewed as a 

collection of stationary parallel processes communication with 

each other via messages. Instead, it is a collection of sequential 

threads, each of which computes, navigates through the 

underlying network, and communicates with other such 

threads. This style of programming is applicable specifically to 

scientific computing, it is easier to use than message passing, 

and it leads to increased performance. 

To illustrate these principles further, consider the analogy of 

a train schedule. Fig. 2 shows graphically the course of four 

trains, Tr1 through Tr4. At time t1, each trains starts from a 

different station s1 though s4 and proceeds to a new station at 

each of the times t2 though t4 as indicated by the arrow.  

 
Fig. 2 Train schedules 

 

The graphical information in Fig. 2 can be represented from 

two different points of view, depending on its intended use. 

Fig. 3 shows the information from each station’s point of view, 

i.e., the arrivals and departures of trains at each station. This 

information would be useful for someone standing in a given 

station and it corresponds to the message-passing view.  

 

 
Fig. 3 Arrivals and Departures 

 

Fig. 4 shows the same information from each train’s point of 

view, i.e., for each train it shows which station it will visit at 

which time. This information would be useful for someone 

traveling on that train and it corresponds to the NavP point of 

view. 

 

 
Fig. 4 train itineraries 
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A. Distributed Sequential Computing (DSC) 

When the data set of a computation is too large for the main 

memory of a single computer, it is advantages to distribute it 

over the collective memories multiple interconnected machines 

because it eliminates paging overhead. The main question is: 

where should the computation be performed? Without 

migration, the programmer must select one of the machines as 

the pivot. The data that does not reside in the local memory 

must be transferred to the pivot machine as needed for its 

computation. This generally results in a performance 

improvement because the network is faster than the paging 

disk. NavP offer an even better way: it allows the computation 

to move to the data it needs to access. This generally improves 

performance because it avoids the movement of large amounts 

of data.  

To illustrate the principle, consider the following program 

fragment, performs some sequential computation over a large 

array A: 

double A[huge]; 

for (i = 0; i < huge; i++) 

   x = compute(x, A[i]);  

Assuming A[huge] is too large for a single memory, it is 

partitioned into n arrays A[smaller] such that 

smaller<memory_size. Each partition A[smaller] is allocated 

on a different machine and the following modified code is 

started on machine 0: 

for (i = 0; i < huge; i++) { 

   hop(node(A[i]));   

   x = compute(x, A[i]);    

The hop statement makes sure that the computation always 

resides on the machine that holds the current element A[i]. 

Note that this statement is mostly a no-op; only when the array 

crosses machine boundary does an actual migration take place. 

Fig. 5 illustrates the performance improvement achieved by 

DSC [24]. The curve shows clearly that the point at which the 

performance degrades rapidly due to paging can be postponed 

by using more machines and thus solve increasingly larger 

problems. 

The ability to utilize the collective memory of multiple 

machines to avoid paging can be exploited using some of the 

other paradigms of Fig. 1, specifically DSM and some of the 

coordination systems. However, they do not allow 

computations to migrate and hence the data must be moved to 

the computation. In contrast, self-migrating computations can 

take full advantage of the underlying network by moving either 

computations or data, depending on which results is less 

overhead. 

B. Algorithmic Integrity 

Message passing is the most common approach to 

developing distributed programs (sequential or parallel). 

Unfortunately, given a centralized sequential program or 

algorithm, there is no easy way to derive a distributed 

message-passing program from it. Instead, a new program 

Fig. 5 Performance of DSC 
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must be developed, which generally bears little similarity to 

the original. NavP preserves the algorithmic integrity of 

centralized sequential programs because the process of 

distribution and/or parallelization requires the insertion of hop 

commands into the original sequential flow. 

To illustrate this concept, consider the following program 

fragment: 

v1 = diag(A) 

v2 = f1(B,v1) 

v3 = f2(A,v2) 

Assume that matrix A resides on a node n1 and matrix B on 

a different node n2. The following message-passing code in 

SPMD style would accomplish the same task: 

if (rank = n1) 

   v1 = diag(A) 

   send(v1, n2) 

   recv(v2, n2) 

   v3 = f2(A,v2) 

else if (rank = n2) 

   recv(v1, n1) 

   v2 = f1(B,v1) 

   send(v2, n1) 

end if 

We make two important observations. First, even though 

this is an extremely simple sequential algorithms and the 

resulting distributed version is still only sequential in its 

execution, the new program is much larger than the original. 

Second, the program structure has been significantly modified: 

to follow the original sequential flow, one must alternate 

between the if and else clauses by matching the respective 

send a receive statements. 

Consider now the corresponding NavP code: 

v1 = diag(A) 

hop(n2) 

v2 = f1(B,v1) 

hop(n1) 

v3 = f2(A,v2) 

The only difference is the insertion of the two hop 

statements; the original sequential flow has been preserved. 

Of the three other paradigms of Fig.1, only mobile agents 

have the ability to explicitly migrate their computations 

through the network. This could be used to preserve the 

algorithmic integrity of sequential programs when adapting 

them to a distributed environment. However, mobile agents 

generally do not support a separate logical space. Hence the 

computation could only be distributed with respect to the 

current physical network and would be dependent on the 

current network topology. Self-migrating computations offer a 

greater flexibility by supporting an application-specific logical 

space. 

C. Parallelization of Sequential Algorithms 

There are several classes of algorithms that are generally 

considered as unparallelizable due to their specific data 

dependencies. One such class are the so-called left-looking 

algorithm, characterized by the fact that the computation of 

any given array element uses all preceding elements in that 

array. The following code fragment represents such a left-

looking algorithm.  

do j = 2 to n 

    do i = 1 to j-1 

        a[j] = (a[j]+a[i])*j/(j+i) 

    end do 

    a[j] = a[j]/j 

end do 

Fig. 6 shows the data dependence: to compute the elements 

labeled as consumer (black), all preceding elements, labeled as 

producers (white) must be available. Thus it appears that there 

is no opportunity for parallelism, because the computation of 

the next element cannot start until all its predecessors have 

already been computed. 

           
Fig. 6 A left-looking dependency 

 

NavP offers an elegant way to parallelize code such as the 

above. The first step is to distribute the data over n machines. 

Fig. 7 shows the distribution of the array over five PEs as an 

example. The next step is to modify the original code by 

inserting the necessary hop statements to make sure the 

computation always resides on the machine that holds the 

currently accessed array elements. A second minor 

modification is to introduce “transport” variables to carry 

copies of relevant data as the computation migrates through 

the network. The following code shows these modifications, 

where the new variable mx carries a copy of the currently 

computed array element a[j]. As with the example of 

subsection III.A, most of the hop statements will turn into no-

ops, since the next array element resides on the same machine. 

do j = 2 to n 

    hop(node[j]); mx = a[j] 

    do i = 1 to j-1 

        hop(node[i]) 

        mx = (mx+a[i])*j/(j+i) 

    end do 

    hop(node[j]); a[j] = mx 

    a[j] = a[j]/j 

end do 

The above computation is distributed but it is still only 

sequential. To parallelize it, we need the following important 

insight: The computation of any given element a[j] does not 

take place on only its owner PE; rather it is distributed over 

multiple PEs. For example, the computation of element a[j] in 

Fig. 7 starts on PE4 but it continues on PE1, PE2, PE3, and 

finally terminates back on PE4. However, PE4 does not need 

to wait until a[j] returns before staring the computation of the 

next element a[j+1]; this can start as soon as the computation 
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of a[i] hops away to PE1. This results in potential parallelism 

due to the overlap of the individual array element 

computations. To achieve this parallelism, we make one final 

modification to the code, namely, by starting each iteration of 

the outer loop as an independent thread, similar to a doall 

operation: 

parthread thrd(j) 

    hop(node[j]); mx = a[j] 

    do i = 1 to j-1 

        hop(node[i]) 

        mx = (mx+a[i])*j/(j+i) 

    end do 

    hop(node[j]); a[j] = mx 

    a[j] = a[j]/j 

end thread 

Fig. 7 illustrates the resulting parallelism by showing the 

paths of the two computations for a[j] and a[j+1]. We refer to 

the resulting structure as a mobile pipeline [25].  

To further illustrate the difference between a conventional 

and a mobile pipeline, compare Figs. 8 and 9. With a 

conventional pipeline (Fig. 8), the data (a through e) is 

pumped through a series stationary computations (C1, C2, C3). 

With a mobile pipeline (Fig. 9), the computations, each 

implemented as a self-migrating thread (C1, C2, C3) follow 

each over as they pass over the stationary series of data (a 

through e). 

 
Fig. 8 Conventional Pipeline Structure 

 

 

 
Fig. 9 Mobile Pipeline Structure 

 

D. Incremental Parallelization 

Traditional message-passing approaches to parallel program 

development require a brand new program to be developed. 

With self-migrating computations, in contrast, it is possible to 

start with a sequential program or algorithm and transform this 

incrementally into a parallel version. Each intermediate 

version is executable and has generally a better performance 

than its predecessor. Hence the programmer can improve the 

performance gradually, rather than having to commit to an all-

or-nothing approach supported by message passing [26, 27].  

Fig. 10 shows the steps of the incremental parallelization 

approach. The first step is to perform a data distribution of the 

underlying large data structures. Data distribution is important 

for the overall communication cost and parallelism. The 

problem of high communication cost caused by improper data 

distributions cannot be corrected by other later efforts. Shared-

memory programming models such as OpenMP on DSM rely 

on their runtime systems to find data layouts; but they do not 

yet deliver as good a performance as MPI programs on 

distributed memory machines [28]. In the case of MP or MP-

based SPMD models, the data layouts are either explicitly 

specified by the programmer as in HPF or automatically 

generated by parallelizing compilers [29, 30, 31, 32, 33]. 

These automatic approaches decompose the data mapping 

process into two steps: alignment and distribution, and attempt 

to find data layout choices either analytically or by resorting to 

integer programming. The underlying mathematical 

representation used is a so-called component affinity graph 

[34] where the nodes represent the dimensions of arrays and 

the weights associated with the edges are relations derived 

from the data reference patterns and thus suggest how the 

Fig. 7 A Mobile pipeline 
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dimensions of different arrays should be aligned and then 

distributed together. While promising to find good data layouts 

for some benchmarks, these automatic approaches are mainly 

confined to research prototype compilers. 

What is common to all of the above approaches is that they 

are limited to regular data distributions (e.g., along columns, 

rows, or blocks). This is because, in the absence of code 

migration, the partitioning of the data dictates the partitioning 

of the programming task. In contrast, programs with mobility 

can follow the data, so their structure is not dependent on the 

data decomposition. As a result, navigational programs can 

take advantage of unstructured data patterns in order to further 

reduce communication overhead. 

Our methodology [35] is based on constructing a 

Navigational Trace Graph (NTG), an undirected weighted 

graph, which is fundamentally different from the component 

affinity graph [34] and its variants. In NTG, the nodes are 

individual entries of all distributed arrays and the weight 

associated with an edge represents the trace between the two 

incident array entries as the DSC thread navigates through 

them. By representing the trace relations at the level of 

individual array entries, both alignment and distribution 

problems are solved in a unified manner. 

There are three kinds of edges in the NTG. First, Locality (or 

L) Edges are introduced between the neighboring entries of an 

array. These edges represent the locality of data access 

exhibited in many algorithms, and they aim at obtaining 

regular data layouts for each array. Second, a Producer-

consumer (or PC) Edge with the weight p is introduced 

between the LHS (left-hand side) and every RHS (right-hand 

side) array entry. The weight represents the communication 

cost incurred if the two linked entries do not reside on the 

same PE. Finally, every array entry in one statement is 

connected with every entry in its successive (in time) statement 

with a Continuity (or C) Edge with the weight c. When several 

equally competitive data layout choices may be found using 

only L and PC edges, the presence of C edges will break the 

tie by favoring the choice that allows successive (in time) 

statements to be executed on the same PE. Once the NTG has 

been generated, we rely on the standard heuristics of the Metis 

tool [36] to partition the graph. 

Once a data distribution exists, the next crucial step is to 

transform the code so that each reference to data is performed 

on a logical node where the corresponding data exists. A 

distributed block, or Dblock, is a block of code that accesses 

data distributed across multiple logical nodes [37]. The 

Dblock Analyser (Fig. 10) is the tool that resolves these blocks 

by inserting the necessary hops and transport variables to carry 

local copies of data. Dblock analysis is necessary for 

correctness, since any atomic operation must be performed on 

a logical node that also contains its operands. The key is to 

perform it in such a way that keeps communication overhead 

small. 

The Dblock analysis consists of three key steps: 

1) Dblock selection: Analyze the sequential program to 

identify the Dblocks to be resolved, choosing the Dblocks 

at appropriate granularities. A Dblock can be any block of 

code: a single statement, a loop, an if-then-else construct, 

etc. 

2) Dblock placement: Determine the logical node(s) on 

which a Dblock will execute. Given a Dblock, we decide 

where the rendezvous of the locus of computation and the 

data it requires should happen by following the principle 

of pivot-computes [38]. This principle states that the 

computation of a Dblock takes place on the logical node 

that owns the largest piece of the distributed data. This 

logical node is called the pivot node. 

3) Code augmentation: Modify the original code so that the 

rendezvous of the locus of computation and the data it 

requires occurs for all Dblocks. This step requires 

inserting hop statements and transport variables to carry 

copies of portions of local data between logical nodes.  

The choice of granularity of the Dblock is crucial. For 

example, with a nested loop we have the choice of resolving 

the Dblock at one of three different levels: an individual 

statement, the inner loop, or the outer loop. Choosing the 

smallest level of granularity results in frequent small messages. 

Choosing the largest level of granularity requires moving large 

chunks of data among machines. Currently, we leave the 

choice of granularity up to the programmer but an important 

challenge for future research is developing heuristics for 

selecting the best level at which a Dblock should be resolved. 

As indicated in Section III C, the fundamental notion of 

parallelism in the NavP view is that of the mobile pipeline. 

This task is performed by the tool Pipeline Builder (Fig. 10); 

the high-level steps are illustrated in Fig. 11. First, the 

sequential code Fig. 11(a) is converted to DSC (Fig. 11(b)), as 

 

Sequential C Code 

Data Distributor 

DBlock Analyzer 

Pipeline Builder 

Optimizing Compiler 

Computer Network 
 

P
er

fo
rm

an
ce

 P
ro

fi
le

r 

Data Distribution 

DSC Code 

DPC Code 

      Native Code 

Results 

 

Fig. 10 Incremental Parallelization 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 3, Volume 2, 2008

327



 

 

described in the section III B. Next, the single DSC 

computation thread is cut into multiple shorter threads, and 

these shorter DSC threads are then composed to form a mobile 

pipeline (Fig. 11(c)). Each of the threads is scheduled to run as 

early in time as possible, subject to the constraint that all 

dependences must be respected. In this example, we assumed 

that the portion of the computation running on PE1 (labeled 1) 

depends only on some initial portion of the computation on 

PE0 and thus can start as soon as this portion (labeled 00) has 

completed. Similarly, the portion 11 can start as soon as 01 has 

completed, and so forth. These partially overlapping threads 

spread the parallel computation as they hop through the 

network, and they continue to maintain low cost of 

communication as before.  

The next step in the incremental parallelization process (Fig. 

XX) is to compile the parallel code produced by the Pipeline 

Builder into native code executable on the underlying network 

cluster. The Performance Profiler then closes the feedback 

loop by generating important performance statistics such as the 

number and frequency of hops, the sizes of the thread-carried 

variables, and level of parallelism/load balancing across the 

PEs. This data can then be used by the programmer to 

incrementally improve the implementation. For example, if a 

particular portion of the code causes frequent hops to occur, 

this indicates that the mapping of the data should be modified 

(e.g., by increasing the number of the cyclic data blocks) or 

that a coarser level Dblock resolution should be used. This 

incremental process of refinement can be repeated until a 

program with the desired performance has been derived. 
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