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Abstract— A solid modeling method is developed in this paper. 

In order to satisfy the tangential continuity, a fourth order partial 
differential equation is proposed and the boundary conditions 
defining the solid are presented. Since an analytical expression of 
solid models is the fastest in the geometric modeling, a unified closed 
form solution to the partial differential equation is sought which 
accurately satisfies the boundary conditions of solids. A number of 
examples are presented to demonstrate the applications of the 
developed method in solid modeling and the effects of vector-valued 
parameters, force function, geometric parameters and basic functions 
on the shape of solids.  
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I. INTRODUCTION 
OST of the objects that we come across, both in the 
physical world and in engineering, are best described by 

their volume. Although the appearance of such objects can be 
modelled by a surface representation, many applications, such 
as CAD, metal forming or even simulations of surgical 
operations, require information pertaining to the entire volume 
of an object rather than just its surface. Thus, solid or volume 
modelling is an important aspect of geometric modelling.  
 Like surface modelling [1-3], volume modelling can be 
realised by purely geometric methods relying on Bézier, B-
spline or NURBS formulations. With such formulations the 
definition and manipulation of the shape of the solid model 
are achieved through the placement and movement of a lattice 
of control points. When the number of these control points 
becomes large, the task of manipulating the shape of the solid 
becomes cumbersome. In addition, any physical object that we 
wish to model may posses a number of physical or mechanical 
properties that we may also wish to model. Although it is 
possible to simulate such properties with a purely geometric 
approach, it is more difficult to do so than with physically-
based modelling techniques. 
 To resolve such problems, physically-based modelling 
techniques have been developed over the past twenty years, 
which primarily represent a solid by its surface model. In 

1987, Terzopoulos et al. employed the continuous elasticity 
theory to model the shape and motion of deformable bodies 
[4]. A year later, Terzopoulos and Fleischer expanded this 
model to cope with viscoelasticity, plasticity and fracture [5, 
6]. Since NURBS have become an industry standard, 
Terzopoulos and Qin applied the Lagrangian mechanics of an 
elastic surface and the finite element method to develop 
dynamic NURBS [7]. Given that many objects exhibit 
symmetries and topological variability, they introduced 
dynamic free-form NURBS swung surfaces for modelling this 
class of objects [8]. In order to overcome the limitations of 
tensor product NURBS surfaces that are topologically 
rectangular, they developed dynamic triangular NURBS 
which are superior as they can be defined over arbitrary 
parametric domains and produce non-degenerate multi-sided 
surface patches [9]. Léon and Veron, and Guillet and Léon 
applied the mechanics of bar networks to deform multi-patch 
tensor based free-form surfaces [10, 11]. By minimising an 
energy functional (subject to user controlled geometric 
constraints and loads), Celniker and Gossard proposed 
deformable curve and surface finite-elements for free-form 
shape design [12]. To reduce the computational burden of the 
finite element method for free-form deformations, Kang and 
Kak developed a new algorithm that works at two different 
levels of resolution. Initially, a coarse resolution is used to 
calculate the overall 3D deformation and, subsequently, a 
finer resolution is used to deform the surface layers of the 
object [13]. Work on reducing the computational cost of 
physically-based modelling was also carried out by Vassilev, 
who preserved the natural representation of the B-spline 
surface control points (in a two dimensional array) and 
presented a more efficient method for manipulating 
deformable B-spline surfaces by minimising an energy 
functional [14]. 
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 These physically-based modelling techniques, although 
effective, have to solve a large set of equations that are 
computationally expensive and not particularly well suited to 
interactive computer graphics applications. 
 Surface-modelling techniques based on the solution of 
partial differential equations have recently become more 
actively investigated. Rather than manipulating the control 
points, these modelling techniques modify the surface shape 
of a solid by adjusting the vector-valued parameters and the 
force function of the PDE (representing the solid), and / or the 
positional, tangential and curvature functions of the boundary 
condition expressions of this equation. In many applications, 
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PDE-based methods are simpler to use and more convenient 
for the representation of surface models. 
 Bloor and Wilson were the first to use PDEs to perform 
surface blending [15] and free-form surface modelling [16]. 
Most recently, Monterde and Ugail presented a new technique 
to create surfaces from prescribed boundaries using elliptic 
partial differential equation operators [17]. Since the solution 
of fourth order PDEs is the key to the successful generation of 
PDE surfaces, some numerical methods such as the finite 
element method [18, 19], the finite difference method [20], 
and the collocation method [21] were also developed. 
However, these numerical methods require expensive 
computation, which hinders their wider application to 
interactive computer graphics and CAD. In order to overcome 
this limitation, Bloor and Wilson proposed the spectral 
method [22] that is efficient for simple boundary conditions 
but less accurate than other methods. 
 Since the vector-valued parameters of the PDE have a 
strong influence on the generated surface shape, You and 
Zhang have proposed a more general PDE [23] for surface 
modelling that introduced a larger set of vector-valued 
parameters. Later, they investigated surface blending using the 
solution of a fourth order PDE [24] and a sixth order PDE 
[25]. They also investigated vase design, using a fourth order 
PDE [26], and surface modelling, using a sixth order PDE 
[27]. 
 As in the physical world all objects have volume, solid 
modelling has a wide range of applications in computer 
graphics and CAD. Due to the complexity of solid modelling, 
however, only a limited number of publications on physically-
based volume modelling have appeared to date. 
 As early as 1984, Barr developed a set of hierarchical solid 
modelling operations that simulate twisting, bending, tapering 
and other similar transformations of geometric objects [28]. In 
1992, Requicha and Rossignac conducted a survey of the field 
of solid modelling and assessed the strengths and weaknesses 
of the various solid modelling techniques [29]. The same year, 
Metaxas and Terzopoulos developed a systematic approach to 
deriving dynamic models from parametrically defined solid 
primitives, global geometric deformations and local finite-
element deformations, and proposed efficient constraint 
methods for connecting these new dynamic primitives 
together to construct articulated models [30]. The following 
year, Bloor and Wilson presented examples of some specific 
solid volumes generated by solving a second order PDE [31]. 
In 2000, Ferley et al. presented a sculpture metaphor for rapid 
shape prototyping that allows the use of free-form shaping 
tools (which can be designed inside the application) and that 
can mimic local deformations [32]. The following year, Breen 
and Whitaker presented an approach to 3D shape 
metamorphosis that has some advantages over other methods. 
These advantages include a minimal need for user input, no 
nodal parameterisation, flexible topology and sub-voxel 
accuracy [33]. By combining a fourth-order elliptic PDE for 
the definition of solid volumes with the equation of motion 
from Dynamics, Du and Qin developed a technique for 

modelling dynamic solids [34]. In their paper, the finite 
difference discretization and the multi-grid subdivision 
techniques were employed to solve numerically the combined 
equation. In 2002, McDonnell and Qin presented a sculptured 
solid modelling system, founded upon free-form splines [35]. 
In 2004, Hua and Qin presented a novel interactive solid 
modelling framework known as “haptic-based dynamic 
implicit solid modelling”, which is founded upon volumetric 
implicit functions and powerful physics-based modelling [36]. 
Developed from PDE-based flow constraints and scalar fields 
of implicit functions, they also proposed a versatile efficient 
and intuitive scalar-field-guided adaptive-shape-deformation 
(SFD) technique for shape modelling and animation [37]. Guo 
et al. presented a scalar-field-driven editing paradigm and a 
system for point-set surfaces that allowed users to manipulate 
and sculpt point-clouds intuitively and efficiently [38]. 
McDonnell and Qin proposed a new volumetric subdivision 
scheme for the interpolation of arbitrary hexahedral meshes 
[39]. Huan and Qin presented a surface reconstruction 
algorithm that can recover correct shape geometry and its 
unknown topology from both volumetric images and 
unorganised point-clouds [40]. In order to maximise the 
modelling potential of PDE-based methodology, Du and Qin 
coupled PDEs with volumetric implicit functions achieving 
both intuitive and interactive shape representation, 
manipulation and deformation [41]. 
 In this paper, we introduce a more general fourth order 
PDE for solid modelling. Whiles the technique presented in 
[31] can only deal with boundary positional continuity and 
give closed form solutions to some specific cases, our 
technique can also cope with boundary tangential continuity 
and has more vector-valued parameters. Thus, our technique 
provides better control over the shape of the generated PDE 
solid. In addition, our technique is able to consider a range of 
general cases of boundary conditions and present a unified 
closed form solution to our fourth order PDE. Compared to 
the numerical algorithm for solving the PDE used by Du and 
Qin [34], our closed form solution is much more efficient.  

II. A STATIC PDE AND ITS CLOSED FORM SOLUTION 
 First, let us introduce the formulation that we use to 
describe a PDE solid volume. This formulation is similar to 
the one used in our previous work to represent the surface 
model of objects [24]. 
 Allowing for the effect of the boundary tangent on the 
shape of the solid volume, a PDE solid model can be 
generated from the solution of a fourth order PDE, shown in 
equation (1), which involves three parametric variables and is 
subject to the boundary conditions, given in equation (2). 
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where ,  and  are 
the vector-valued shape parameters of the PDE, 

 is a vector-
valued positional function,  and  are the 
vector-valued functions of the boundary surfaces of the 
generated solid volume, 
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),(1 vuG  and ),v(2 uG  are the vector-
valued functions of the boundary tangents of this volume, and 

 is a vector-valued force function. All the vector-
valued functions have three components 
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 The PDE (1) subject to the boundary conditions (2) can be 
solved using the finite element method, the finite difference 
method or the weighted residual method. All these methods 
are effective in solving PDEs, but they are slow and far from 
ideal for interactive geometric modelling. To overcome this 
difficulty, we will develop an accurate and efficient closed 
form resolution method for our PDE. 
 The general solution of PDE (1) subject to boundary 
conditions (2) consists of a complementary solution of the 
associated homogeneous equation of the PDE and a particular 
solution of the non-homogeneous PDE. 
 In order to find the closed form complementary solution of 
PDE (1) subject to the boundary conditions (2), first we 
decompose the functions of the boundary conditions into some 
basic functions  of a non-polynomial form (since each 
term of a polynomial is a basic function and a polynomial is 
the sum of a number of such basic functions). With these basic 
functions, we rewrite the boundary conditions (2) in the 
following form: 
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 Then, we construct a complementary solution of the 
associated homogeneous equation of PDE (1) which consists 
of the unknown functions of parametric variable w  and the 
known basic boundary functions , i. e., ),( vujg
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 Substituting equation (4) into PDE (1) while ignoring the 
force function, we obtain the following fourth order partial 
differential equation: 
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 For the basic boundary functions whose fourth partial 
derivatives can be expressed with the basic boundary 
functions themselves, i.e., 
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equation (5) can be formulated below: 
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where  is a vector-valued constant that is given as: je
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 For the basic boundary functions whose fourth partial 
derivatives cannot be expressed with the basic boundary 
functions themselves, we can always transform them into 
those satisfying Eq. (6), e.g., a Fourier series. 
 Let us now consider the following two situations: 0=je  
and 0≠je . If 0=je , equation (7) reduces to: 
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 The solution to the above fourth order ordinary differential 
equations can be written as: 
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where , ,  and  are unknown constants, and 

,  and  are the components of the vector-
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 Substituting equation (9) into (4), the position function of 
the volume takes the form: 
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where ,  and  are the components of 
the vector-valued function . 

),( vugxj ),( vug yj ),( vugzj

),( vujg

 If 0≠je , the components of the unknown function  
can be taken to be: 
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 Substituting equation (12) into (7), we obtain the 
following non-linear algebraic equations: 
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 Equation (13) is an algebraic equation. The solution of 
which consists of four roots that can be written as: 
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where i  is the imaginary unit. 
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 Using equation (14), we can rewrite the components of the 
unknown function  as: )(wjh
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 Substituting equation (15) into (4), the position function of 
the solid defined by the boundary conditions (3) becomes: 
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 Subject to the specified boundary conditions, the 
coefficient  and the unknown constants , ,  and 

 can be determined by substituting equations (11) or (16) 
into these boundary conditions. 
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 From the theory of partial differential equations, we know 
that the particular solution of PDE (1) depends on the 
mathematical representation of the force function. Therefore, 
in the next section, we introduce a number of examples that 
show how we determine the particular solution of PDE (1). 
 Superimposing the particular solution on the 
complementary solution (11) or (16), we obtain the general 
solution of PDE (1) that can be used to generate the required 
solid volume. 

III. THE GENERATION OF SOLID VOLUMES 
 In this section, we discuss the application of the above-
developed closed form solution to the modelling of a solid 
using a number of examples. 
 In our first example, we generate a solid volume defined 
by two planar surfaces whose boundary curves are square or 
rectangular. This example was selected to show how the 
geometric parameters of the boundary conditions affect the 
shape of generated PDE solid. 
 Here, the boundary conditions of the solid are given by: 
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where  and   determine the shape and size of 
the planar boundary surfaces,  and  determine the relative 
height of these surfaces in the 
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, and  and  determine the direction and size 

of the tangents of the solid to be generated at the boundary 
surfaces. 
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 Substituting equation (18) into the boundary conditions 
(17), we determine all the unknown constants. Initially, we set 
the geometric parameters to the following values: 
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bbaah , and we 
obtain the cuboid shown in figures 1a and 1b. Then, we alter 
the values of some of the geometric parameters to the 
following values: = ba  and 2133 === hba . The 
generated solid now becomes the irregular hexahedron shown 
in figures 1c and 1d. Setting the geometric parameters to the 
values: 5.00 −=a , 5.11 =a 2a, , 10 −== b 1 33 == ba , 4.02 −=b , 

13 =b 0, 0=h , 21 =h , and , , 0a= 1a =′ 2a0a′ 1a 2a=′ , 33 aa =′ , 

00 bb =′ , 1b1b =′ , 22 bb =′ , 3b3b =′ ,  and 1h0h =′ 11h 2h=′ , we 
obtain the solid depicted in figures 1e and 1f. Finally, 
changing the boundary tangents to , 00 =′ 5.2 aa 15.2 a1a =′ , 

22 2aa −=′ , 32a3a −=′ , 05b0 .2b −=′ , ,  and 11 bb =′ 5.2− 11 hh =′ , 
resulted in the solid depicted in figures 1g and 1h. 
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                         g                                           h 
Fig. 1  PDE solids defined by two parallel planar surfaces with 
square or rectangular boundary curves. 
 
 From figure 1, it is clear that varying the geometric 
parameters and tangents of the solid at the boundary surfaces 
can greatly affect the shape of the generated PDE solid. 
 Generating the images of the PDE solids presented in 
figure 1 was fairly straightforward. In each case, we did so by 
displaying the six isoparametric surfaces that represent the 
outer skin of the corresponding PDE solid. Using equation 
(18), we generated these isoparametric surfaces by keeping 
the value of one of the parametric variables  constant, 
while varying the values of the other two in the range 

),,( wvu
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, for the second isoparametric surface [ ]1,0, ∈wv =u  and 
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 The second example is to generate a solid volume confined 
by one circle plane and one elliptic plane. This example is 
employed to demonstrate how the vector-valued parameters in 
Eq. (1) influence the shape of solids. The boundary conditions 
at the boundary surfaces have the following forms 
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where  and  determine the size of the circle plane, 0r 0h 0r′  and 
 determine the direction and size of the tangent of the solid 

at the boundary plane, ,  and  determine the size of the 
elliptic plane, and 
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The position functions (11) and (15) of the solid volume 
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                         a                                   b  
 

 
                                    c 
Fig. 2  Solids defined by two parallel planes confined by a 
circle and an ellipse 
 
 Substituting Eq. (20) into (19), all the unknown constants 
in Eq. (20) were determined. For this example, we examine 
how the vector-valued parameters affect the shape of the solid. 
Therefore, all the geometric parameters were fixed at 

5.0000 ==′= arr , 10 =b , 0000 10 =′=′=′ bah =′h=h , and 21 =h . 
Since the z  component of the vector-valued parameters does 
not affect the solution function, we only consider the x  and 

 components. Firstly, taking , y 1=ya=xa 4== ybxb  and 
100−== yx cc , the image in Fig. 2a was obtained. Then, 

changing 100−== yx cc  to  and 10−=x =ycc 4== yx bb  to 
5.2== yx bb , the image was changed to that in Fig. 2b. 
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Finally, fixing c but changing 10−== yx c  5.2== yb  xb ack to 

xb he image in Fig. 2c was created. From these 
images, it is clear that the variety of the vector-valued has 
greatly changed the shape of the solid. 

b
 t4== yb ,

 In our third example, we generate a solid volume defined 
by two planar or 3D boundary surfaces. This example was 
selected to show how different basic functions affect the shape 
of the generated PDE solids. 
 Here, the boundary conditions of the solid are given by: 
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where , ,  and  are geometric parameters determining 
the size of the top boundary surface, , , 

1r
′  and 1h′  

determine the direction and size of the tangent of the solid at 
the top boundary surface, ,  and  are the geometric 
parameters determining the size of the bottom boundary 
surface, and ,  and  determine the direction and size of 
the tangent of the solid at the bottom boundary surface. 
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uvu π2sin),(1 =

2h 3h

vnuv xy

r

 When  in equation (22) is set to 0, two planar boundary 
surfaces are described, otherwise two three-dimensional 
boundary surfaces are described. 

zn

 The basic functions in the above boundary conditions are 
taken to be  and vgx ugx πsin) =,(2  for the 
x  component, vuvug y π2cos),(1 =  and vnxyuvug y πcos),(2 =  
for the  component, and  and y 1) =,vu(1zg vnzuvugz πsin),(2 =  
for the z  component. The solution functions are: 

( )
( )

wtce

vnuwt

vuw

vnuwt

vuw

zz
wt

xyy

y

xyx

z

π

π

π

π

cos

cossin

2cos

sin

2sin

32

2

1

2

+

⎟
⎠
⎞

⎟
⎠
⎞

−

vnuwt
wcwcw

cec

cec

cec

cec

zz

zz

y
wt

y
w

y
wt

y

x
wt

x

x
wt

x

y

y

x

x

πsin)

cos

3
41

2
31

22

3121

3222

3121

22

1

2

1

++

++

++

++

+

−

−

−

−

c
cz

c

ecy

c

ecx

z

z

y

y

x

t
x

x

        

       

      

42

11

12

11

12

11

+
+=

⎜
⎝
⎛+

⎜
⎝
⎛=

+

=

cecc

cwte

tcwt

cwte

tcwt

z
wt

zz

yy
t

yy
wt

xx
wt

xxx
w

z

y

y

x

sin
(

cos

sincos

sincos

sin

221221

42232

411

422

1411

1

2

1

++

+

+

+

++

   (23) 

where 
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 In this example, the vector-valued parameters were set to 
,  and === zyx aaa 5.2= 10−=== zyx cc

5.00 =r 1 =r

c

1h

, and 
the geometric parameters were set to , , 1.0=

5.02 =r , 20 =h , , 02 =h 1.03 −=h , and 
0302 2110 =′=′=′=′=′=′=′ hhr

n

hh

8

rr

8.02 =r

. The solid depicted in figure 3a 
was generated by setting  and . Changing  
to 30, generated the solid depicted in figure 3b. Setting 

, 

20=xy 0=zn xyn

=xyn 10=zn

n

 and , resulted in the solid depicted in 
figure 3c. Finally, setting  and , resulted in the 
solid depicted in figure 3d. 

14=xy 6=zn

v
 Examining these images we can conclude that selecting 
different basic functions (i.e. u π20sin , vu π30sin , vu π8sin  
and vu π14sin  for the x  component, u vπ20cos , vu π30cos , 

vu π8cos  and vu π14cos  for the  component, and uy vπ10sin  
and vu π6sin  for the z  component) greatly influences the 
shape of the generated solid. 
 

         
      a                                               b 
 

        
                           c                                               d 
Fig. 3  PDE solids defined by two planar or three-dimensional 
surfaces. 
 
  In our fourth example, we generate a solid volume 
defined by two boundary surfaces confined within two circles 
and subjected to a vector-valued force function. This example 
was selected to show how different combinations of the 
vector-valued parameters, force function, boundary positions 
and tangents have the capacity to generate solids with widely 
diverse shapes. 
 Here, the boundary conditions of the solid are given by: 
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where  and  determine the size of the upper boundary 
surface,  and  determine the direction and size of the 
tangent of the solid at this boundary,  and  determine the 
size of the bottom boundary surface, and  and 

0r
r

0h
h0′ 0′

1r 1h

1r′ 1h′  determine 
the direction and size of the tangent of the solid at this 
boundary. 
 The basic functions in the above boundary conditions are 
given by vuvugx π2sin),(1 =  for the x  component, 

vuvug y π2cos y),(1 =  for the  component, and 1),(1 =vuzg  for 
the z  component. Now, the position functions (11) and (16) 
of the solid volume become: 
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 As we now wish to consider the effect of the force 
function on the shape of the generated solid, we represent this 
function in the following form: 
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 Substituting equation (28) into PDE (1), the particular 
solution of the non-homogeneous fourth order PDE is given 
as: 
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 Superimposition of equation (29) onto equation (26) 
results in the general solution of the non-homogeneous fourth 
order PDE (1), which has the form: 
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 Substituting equation (30) into (25), we determine all the 
unknown constants in equation (30) and use it to generate the 
solid.  
 Different combinations of the vector-valued parameters, 
force function, and positional and tangential parameters are 
listed below and the corresponding solids they generate are 
shown in figure 4.  

Fig. 4a: 1== yx bb , , 5.9−== yx cc 5.00 =r , 00 =′r , 

5.01 =r , 01 =′r , 00 =h 0, 0=′h , , ,  and 31 =h 71 =′h 5 0 3=p. 410×

3=ξ . 
Fig. 4b: 5.2== yx bb , , 10−== yx cc 5.00 =r , 5.20 =′r , 

5.01 =r , 5.21 =′r , 00 =h 0, 0=′h , , ,  and 31 =h 1′h 3 0 8=p= 410×

5=ξ . 
Fig. 4c: 4== yx bb , , , 100−== yx cc 5.00 =r 5.20 =′r , 

, 5.01 =r 5.21 =′r , , 00 =h 00 =′h 31 =h, , ,  
and 

61 =′ 0ph 6108.1 ×=

7=ξ . 
Fig. 4d: 4== yx bb , , 10−== yx cc 5.00 =r , 5.10 −=′r , 

5.01 =r , 21 =′r , 00 =h 0, 3=′h , , ,  and 31 =h 1′h 6= 0 =p 5103×

7=ξ . 

          
          a                                 b                             c   

          
              d                     e                     f                      g 
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            h                                 i                                   j   

          
                      k                         l                          m   

   
                n                              o                              p                                        

             
                               q                                           r                            

        
                        s                                   t 

      
                            u                                    v               

     
                            w                                          x 

Fig. 4  Solids generated using different combinations of the 
parameters controlling their shape. 

 
Fig. 4e: 4== yx bb , , 10−== yx cc 5.00 =r , 5.10 −=′r , 

5.01 =r , 21 =′r , 00 =h 0, 3=′h , , ,  and 31 =h 1′h 6 0 =p= 5103×−

7=ξ . 
Fig. 4f: 5.2== yx bb , , 10−== yx cc 5.00 =r , 5.10 −=′r , 

5.01 =r , 5.11 =′r , 00 =h , 60 =′h , , ,  and 31 =h h 5.4= p1′
510=0

7=ξ . 
Fig. 4g: 5.2== yx bb , , , 10−== yx cc 5.00 =r 5.10 −=′r , 

, 5.01 =r 21 =′r , , 00 =h 0 3=′h , , ,  and 31 =h 1 =′h 9 0 −=p 4103×

5=ξ . 
Fig. 4h: 5.2== yx bb , , 10−== yx cc 5.00 =r , 10 −=′r , 

5.01 =r , 5.01 =′r , 00 =h , 3=0′h , , 31 =h 61 =′h ,  
and 

4105.1 ×0p =

3=ξ . 
Fig. 4i: 5.2== yx bb , , , 10−== yx cc 8.00 =r 8.00 =′r , 

, 5.01 =r 6.1−1 =′r , , , , 00 =h 30 =′ 31 =hh 61 =′h ,  
and 

4105.1 ×=0p
3=ξ . 

Fig. 4j: 5.2== yx bb , , 10−== yx cc 6.00 =r , 8.10 −=′r , 

5.01 =r , 6.01 −=′r , 00 =h , 30 =′h , , 31 =h 61 =′ 0ph ,  
and 

4105.5 ×−=

5=ξ . 
Fig. 4k: 5.2== yx bb , , 10−== yx cc 6.00 =r , 8.10 −=′r , 

5.01 =r , 6.01 −=′r , 00 =h , 30 =′h 31 =h, , 61 =′h 0p,  
and 

4105.5 ×=

5=ξ . 
Fig. 4l: 5.3== yx bb , , , 10−== yx cc 8.00 =r 4.20 −=′r , 

, 5.01 =r 5.01 =′r , , 00 =h 30 =′h , , ,  
and 

31 =h h 9= 0p1′
4105.5 ×−=

5=ξ . 
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Fig. 4m: , , , 5.3== yx bb 10−== yx cc 8.00 =r 4.20 −=′r
4105.5 ×=

, 

, , , , , ,  
and 

5.01 =r
=

5.0 00 =h1 =′r
9

30 =′ 31 =hh 91 =′h p0

ξ . 
Fig. 4n: , , , 5== yx bb 20−== yx cc 5.10 =r 5.40 −=′r

5105×

, 

, , , , , ,  and 5.01 =r
7=

01 =′r 00 =h 0′h 3= 31 =h 1′h 3= 0 =p
ξ . 

Fig. 4o: , 3== yx bb 20−== yx cc

31 =h 61 =′h

, , , , 

, , , , ,  and 

10 =r

0 9−=p

50 −=′r
510×

5.01 =r

1111 −=′r 0= 60 =′h0h =ξ . 
Fig. 4p: , , 15== yx bb 40−== yx cc 10 =r , 20 −=′r

103×=

, 

, , , , , ,  
and 

5.01 =r
=

1 00 =h h1 −=′r
11

6= 31 =h 1′h0′ 5.4= 6
0p

ξ . 
Fig. 4q: , , , , , 

, , , , ,  and 

1== yx bb

0 60 =′h

10−== yx cc

31 =h 91 =′h

10 =r

0 3×=p

30 =′r
410

5.01 =r

311 −=′r 0 =h =ξ . 
Fig. 4r: , , , 1== yx bb 10−== yx cc 10 =r 30 −=′r , 5.01 =r

3

, 

, , , , ,  and 21 −=′r 0= 90 =′h0h 31 =h 31 =′h 4100 3×=p =ξ . 
Fig. 4s: , , , 1== yx bb 10−== yx cc 10 =r 30 −=′r , 5.01 =r

7

, 

, , , , ,  and 21 −=′r 0= 90 =′h0h 31 =h 31 =′h 5100 3×=p =ξ . 
Fig. 4t: , , , , , 

, , , , ,  and 

1== yx bb

0= 90 =′h

10−== yx cc

31 =h 01 =′h

10 =r

0 3×=p

30 −=′r
510

5.01 =r

511 −=′r 0h =ξ . 
Fig. 4u: , , , 1== yx bb 10−== yx cc 10 =r 30 =′r , 5.01 =r

5

, 

, , , h , ,  and 11 =′r 00 =h 90 =′h 1 3= 5.71 =′h 4100 3×=p =ξ . 
Fig. 4v: , , , , , 

, , , h , ,  and 

1== yx bb

0 30 =′h 1

10−== yx cc

3= 91 =′h 0p

10 =r

105×=

10 =′r
5

5.01 =r

931 =′r 0 =h =ξ . 
Fig. 4w: , , , 1== yx bb 10−== yx cc 10 =r 60 =′r , 5.01 =r

9

, 

, , , h , ,  and 31 =′r 00 =h 30 =′h 1 3= 5.101 =′h 5100 3×=p =ξ . 
Fig. 4x: , , , 1== yx bb 10−== yx cc 8.00 =r 40 −=′r , 11 =r

7

, 

, h , , , ,  and 4.21 −=′r 00 = 60 =′h 31 =h 91 =′h 5100 5×=p =ξ . 
 From the images shown in this figure, it is clear that by 
combining different force functions and other parameters, a 
large variety of solid shapes can easily be generated. 

IV. CONCLUSIONS 
In this paper, a solid modelling method has been developed. 

It is based on our proposed fourth order partial differential 
equations and boundary conditions. By introducing the 
method of variable separation, the unified forms of the closed 
form solutions to the partial differential equations subjected to 
the boundary conditions are obtained.  

With the obtained closed form solution, four examples have 
been given to demonstrate how solid models are represented 
and manipulated. We have also shown how different vector-
valued parameters, force function, geometric parameters and 
basic functions affect the shape of the solids. Due to the 
analytical nature of the representations, the proposed method 
is accurate and has a high efficiency in solid modeling.  

REFERENCES   
 
[1] H. Ugail and S. Kirmani, “Shape reconstruction using partial differential 

equations,” WSEAS Transactions on Computers, vol. 5, pp. 2156-2161, 
2006. 

[2] S. F. Qin and D. Wright, “Universal attraction force-inspired freeform 
surface modelling for 3D sketching,” WSEAS Transactions on 
Computers, vol. 5, pp. 1333-1338, 2006. 

[3] G. Mo and Y. Zhao, “A new method for designing approximate 
developable surfaces,” WSEAS Transactions on Computers, vol. 5, pp. 
1130-1135, 2006. 

[4] D. Terzopoulos, J. Platt, A. Barr and K. Fleischer, “Elastically 
deformable models,” Computer Graphics, vol. 21, pp. 205-214, 1987. 

[5] D. Terzopoulos and K. Fleischer, “Modelling inelastic deformation: 
viscoelasticity, plasticity, fracture,” Computer Graphics, vol. 22, pp. 
269-278, 1988. 

[6] D. Terzopoulos and K. Fleischer, “Deformable models,” The Visual 
Computer, vol. 4, pp. 306-331, 1988. 

[7] D. Terzopoulos and H. Qin, “Dynamic NURBS with geometric 
constraints for interactive sculpting,” ACM Transactions on Graphics, 
vol. 13, pp. 103-136, 1994. 

[8] H. Qin and D. Terzopoulos, “Dynamic NURBS swung surfaces for 
physical-based shape design,” Computer-Aided Design, vol. 27, pp. 111-
127, 1995. 

[9] H. Qin and D. Terzopoulos, “Triangular NURBS and their dynamic 
generations,” Computer Aided Geometric Design, vol. 14, pp. 325-347, 
1997. 

[10] J. C. Léon and P. Veron, “Semiglobal deformation and correction of 
free-form surfaces using a mechanical alternative,” The Visual 
Computer, vol. 13, pp. 109-126, 1997. 

[11] S. Guillet and J. C. Léon, “Parametrically deformed free-form surfaces 
as part of a variational model,” Computer-Aided Design, vol. 30, pp. 
621-630, 1998. 

[12] G. Celniker and D. Gossard, “Deformable curve and surface finite-
elements for free-form shape design,” Computer Graphics, vol. 25, pp. 
257-266, 1991. 

[13] H. Kang and A. Kak, “Deforming virtual objects interactively in 
accordance with an elastic model,” Computer-Aided Design, vol. 28, pp. 
251-262, 1996. 

[14] T. I. Vassilev, “Interactive sculpting with deformable nonuniform B-
splines,” Computer Graphics Forum, vol. 16, pp. 191-199, 1997. 

[15]  M. I. G. Bloor and M. J. Wilson, “Generating blend surfaces using 
partial differential equations,” Computer Aided Design, vol. 21, pp. 165-
171, 1989. 

[16] M. I. G. Bloor and M. J. Wilson, “Using partial differential equations to 
generate free-form surfaces,” Computer-Aided Design, vol. 22, pp. 202-
212, 1990. 

[17] J. Monterde and H. Ugail, “On harmonic and biharmonic Bézier 
surfaces,” Computer Aided Geometric Design, vol. 21, pp. 697-715, 
2004. 

[18] J. M. Brown, M. I. G. Bloor, M. S. Bloor and M. J. Wilson, “The 
accuracy of B-spline finite element approximations to PDE surfaces,” 
Computer methods in Applied Mechanics and Engineering, vol. 158, pp. 
221-234, 1998. 

[19] Z. C. Li and C.-S. Chang, “Boundary penalty finite element methods for 
blending surfaces, III. Superconvergence and stability and examples,” 
Journal of Computational and Applied Mathematics, vol. 110, pp. 241-
270, 1999. 

[20] C. Y. Cheng, M. I. G. Bloor, A. Saia and M. J. Wilson, “Blending 
between quadric surfaces using partial differential equations,” in Ravani, 
B. (Ed.), Advances in Design Automation, vol. 1, Computer and 
Computational Design, ASME, pp. 257-263, 1990. 

[21] M. I. G. Bloor and M. J. Wilson, “Representing PDE surfaces in terms of 
B-splines,” Computer-Aided Design, vol. 22, pp. 324-331, 1990. 

[22] M. I. G. Bloor and M. J. Wilson, “Spectral approximations to PDE 
surfaces,” Computer-Aided design, vol. 28, pp.145-152, 1996.  

[23] L. H. You and J. J. Zhang, “Blending surface generation with a fourth 
order partial differential equation,” The Sixth International Conference 
on Computer-Aided Design and Computer Graphics 
(CAD/Graphics’99), Shanghai, China, 1-5, December, 1999. 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 4, Volume 2, 2008

460



 

 

[34] H. Du and H. Qin, “Integrating physics-based modelling with PDE 
solids for geometric design,” in Proceedings of Ninth Pacific Conference 
on Computer Graphics and Applications, 16-18, October, Tokyo, Japan, 
published by IEEE Computer Society, pp. 198-207, 2001. 

[24] L. H. You, J. J. Zhang and P. Comninos, “Blending surface generation 
using a fast and accurate analytical solution of a fourth order PDE with 
three shape control parameters,” The Visual Computer, vol. 20, pp. 199-
214, 2004.  

[35] K. T. McDonnell and H. Qin, “Dynamic sculpting and animation of free-
form subdivision solids,” The Visual Computer, vol. 18, pp. 81-96, 2002. 

[25] L. H. You, P. Comninos and J. J. Zhang, “PDE blending surfaces with 
2c  continuity,” Computers & Graphics, vol. 28, pp. 895-906, 2004. [36] J. Hua and H. Qin, “Haptics-based dynamic implicit solid modeling,” 

IEEE Transactions on Visualization and Computer Graphics, vol. 10, 
pp. 574-586, 2004. 

[26] J. J. Zhang and L. H. You, “PDE based surface representation-Vase 
design,” Computers & Graphics, vol. 26, pp. 89-98, 2002. 

[27] J. J. Zhang and L. H. You, “Fast surface modelling using a 6th order 
PDE,” Computer Graphics Forum (Eurographics2004), vol. 23, pp. 
311-320, 2004. 

[37] J. Hua and H. Qin, “Scalar-field-guided adaptive shape deformation and 
animation,” The Visual Computer, vol. 20, pp. 47-66, 2004. 

[38] X. Guo, J. Hua and H. Qin, “Scalar-function-driven editing on point set 
surfaces,” IEEE Computer Graphics and Applications, vol. 24, pp. 43-
52, 2004. 

[28] A. H. Barr, “Global and local deformations of solid primitives,” in Proc. 
SIGGRAPH '84, pp. 47-58, 1984. 

[29] A. A. G. Requicha and J. R. Rossignac, “Solid modeling and beyond,” 
IEEE Computer Graphics and Applications, vol. 12, pp. 31-44, 1992. 

[39]  K. T. McDonnell and H. Qin, “Interpolatory, solid subdivision of 
unstructured hexahedral meshes,” The Visual Computer, vol. 20, pp. 
418-436, 2004. [30]  D. Metaxas and D. Terzopoulos, “Dynamic deformation of solid 

primitives with constraints,” Computer Graphics (SIGGRAPH '92, 
Proc.), vol. 26, pp. 309-312, 1992. 

[40] Y. Huan, and H. Qin, “A subdivision-based deformable model for 
surface reconstruction of unknown topology,” Graphical Models, vol. 
66, pp. 181-202, 2004. [31] M. I. G. Bloor and M. J. Wilson, “Functionality in solids obtained from 

partial differential equations,” Computing Suppl., vol. 8, pp. 21-42, 
1993. 

[41] H. Du, and H. Qin, “A shape design system using volumetric implicit 
PDEs,” Computer-Aided Design, vol. 36, pp. 1101-1116, 2004. 

[32] E. Ferley, M. Cani and J. Gascuel, “Practical volumetric sculpting,” The 
Visual Computer, vol. 16, pp. 469-480, 2000 . 

 
 

[33] D. E. Breen and R. T. Whitaker, “A level-set approach for the 
metamorphosis of solid models,” IEEE Transactions on Visualization 
and Computer Graphics, vol. 7, pp. 173-192, 2001. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 4, Volume 2, 2008

461




