INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

Improved algorithms
for minimum flows in bipartite networks

Eleonor Ciurea, Oana Georgescu, Daniela Marinescu

Abstract—In this paper we study minimum flow al- present specialization algorithms for minimum flow in
gorithms for bipartite networks. We present two classes bipartite networks. Section 5 deals with an example for
of algorithms for finding minimum flow in bipartite gne of these algorithms.

”Ft""‘?trhks' The t'mt,e ﬁ’lmf‘”ds for sheverﬁl ”:'”'”f‘t‘;]m flow |5 the next presentation we assume familiarity with
algorithms automatically improve when the algorithms are .o\ a1gorithms and we omit many details, since they
applied without modification on bipartite networks. We . .

are straightforward modifications of known results. The

obtain further running time improvements by modifying i) oo
the algorithms. This modification applies only to preflow '€ader interested in further details is urged to consult the

algorithms. In the final part of the paper we present an P00k [1] for maximum flow problem and the paper [5]
example for one of these algorithms. for minimum flow problem.

Index Terms—bipartite networks, minimum flow prob-
|em, network a|gorithms’ network flow II. TERMINOLOGY AND PRELIMINARIES

In this section we discuss some basic notions and
results used in the rest of the paper.
_ _ For the interest of this paper, we consider a capaci-
HE theory of flows is one of the most importantyieq networkd = (N, A, 1, ¢, s, ¢) with a nonnegative
parts of Combinatorial Optimization. capacity ¢(z,y) and with a nonnegative lower bounds

The computation of a maximum flow in a graph haﬁmctionl(x,y) associated with each afe,y) € A. We

been an important and well studied problem, both in ”Eﬁstinguish two special nodes in the netwatka source

field of computer science and operations research. MgtWye s and a sink node. We further assume. without

efficient algorithms have been developed to solve thigss of generality, that the network contains no parallel
problem, see, e.g., [1]. By improving the running time

' . "MC8dges.
of Dinic’s [8] and Karzanov's [12] algorithms, Gusfield, g, 5 given pair of not necessarily disjoint subs&ts

Martel and Fernandez-Baca [11] have developed the fi&stof the nodes se¥ of a network(we use the notation:
specializations of maximum flow algorithms for bipartite

networks. Ahuja, Orlin, Stein and Tarjan [2] provided (X, Y) ={(z,y)|(z,y) e A,z e X,y e Y}
further improvements and proved that it is possible to

obtain new time bounds for bipartite networks. The papsélpd for a given functionf on arcs setd we use the

I. INTRODUCTION

by Gusfield, Martel and Fernandez-Baca [11] describggtatlon: %7 —
several problems which can be solved using network f(X,Y) = (Xz;/)f(a:,y)

flow in a bipartite graph.
The computation of a minimum flow in a network A flowis a functionf : A — R, satisfying the next

has been investigated by the authors in [3], [4], [5], [6Eonditions:

[71, [9], [10]. The minimum flow problem in bipartite v, ifz=s

network was not treated by other authors. f(z,N) — f(N,z) = 0, if 2 #s,t (1.a)
The brief outline of the paper is as follows: in Section v =t

2 we discuss some basic notions and results used in the 7

rest of the paper. Section 3 deals with original algorithms ;.) < f(2,y) < ¢(z,y),V(z,y) € A, (1.b)

for minimum flow in bipartite networks. In Section 4 we
for somev > 0. We refer tov as thevalue of the flow f.
E. Ciurea, O. Georgescu and D. Marinescu are with the Depart- The maximum (minimum) flow problégto determine
ment of Theoretical Computer SciencE&ansivania University of : : [P
Brasov, Str. luliu Maniu nr. 50, 500091, Brasov, ROMANIA, e-mail:a flow f_for Whl(,:h v is maximized (ml_mmlzed)'
{e.ciurea, 0.georgescu, mdaniela} @unitbv.ro. A cutis a partition of the nodes séf into two subsets

Manuscript received December 10, 2008; revised . S andT = N-S. We represent this cut using notation
351

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

[S,T]. We refer to a cufS, 7] as ans-t cutif s € S for maximum and minimum flow problem respectively.
andt € T. We refer to an ardz,y) with z € S and We refer to a node: with é(z) = 0 (é(x) = 0) as
y € T as aforward arcof the cut and an ar€r, y) with a balanced node. A preflowf satisfying the condition
x € T andy € S as abackward arcof the cut. Let é(x) =0 (e(z) =0), for each noder € N — {s,t} is a
(S,T) denote the set of forward arcs in the cut and I@bw. Thus, a flow is a particular case of preflow.

(T, S) denote the set of backward arcs. For the maximum (minimum) flow problem, thesid-
For the maximum flow problem, we define tbapac- ual capacity7(z,y) (7(z,y)) of any arc(z,y) € A,
ity ¢[S,T] of as-t cut[S,T] as with respect to a given flow/preflowf, is given by
E[S,T] :C(S,T) 7Z(T7 S) (2) T(l‘,y) :C(.T,y)—f(l‘,y)+f<y,$)—l<y,fli) (T(%,y) =

c(y,z) — fly,z) + f(z,y) — l(x,y)). By convention, if
and for the minimum flow problem, we define th€z,y) € A and(y,x) ¢ A then we add the arfy, z) to
capacityc[S, T of a s-t cut [S,T] as the set of arcsd and we set(y, x) = 0 andc(y, z) = 0.

N _ The networkG = (N, A) (G = (N, A)) consisting
A8, T] = US,T) = e(T). 3) only of the arcs with positive residual capacity is re-
We refer to ans-t cut whose capacity[S,T] is the ferred to as theesidual network(with respect to the
minimum €[S, T] is the maximum) among al-¢ cuts flow/preflow f).

as aminimum (maximum) cut. In the residual networkG = (N, A), the distance
The maximum (minimum) flow problem in a networkfunctionis a functiond : N — N. We say that a distance
G = (N, A,l,c,s,t) can be solved in two phases: function isvalid if it satisfies the following conditions:
(P1) establish a feasible floy, if it exists; ~
(P2) from a given feasible flow, establish the max- d(s) =0 (8.a)
imum flow f (minimum flow). and
Theorem 1:Let G = (N, A,l,¢,s,t) be a network, d(y) <d(z)+1,Y(z,y) € A (8.b)

[S,T] as-t cut andf a feasible flow with value. Then

~

We refer tod(z) as thedistance label of node and to

v=fIST]=f(8T) - f(T.5) (43) a5 arc(z,y) € A as anadmissiblearc if d(y) = d(z)+1;
and therefore, in particular, otherwise it isinadmissible. We refer to a path from

nodes to nodet consisting entirely of admissible arcs
as anadmissible path. We say that the distance labels
Theorem 2:Let G = (N, A,l,¢,s,t) be a network, areexactif for each nodez, c?(x) equals the length of
[S,T] a minimum s-t cut and[S,T] a maximums-t the shortest directed path from nodléo nodez in the
cut. We denote the values of a maximum flgwand residual network. We refer to a path inG from the
minimum flowf by v and v, respectively. Then source nodes to the sink nodet as adecreasing path

if it consists only of arcs with positive residual capacity.

s, 7] < v < S, T) (4.b)

v =25, T] (5.2) Clearly, there is an one to one correspondence between
and A set of decreasing paths @i and the set of directed paths
v =¢[5,T] (5.b) fromstotinG.

H !/ [
A preflow f is a functionf : A — R that satisfies We (_1ef|ne thelayered ne'twoer' - (N.’A ,7) 8s
(1.b) and follows: the nodes setV is pgrtltloned into layers
Ny, ..., N, where layerN; contains the nodes whose
f(N,z) — f(z,N) > 0,Vz € N — {s,t} (6.a) exact distance labels equalso thatd(z) = i. Further-
more, for each ar¢z,y) in the layerd networky € N;
andy € N;,, for somei. We say thatf’ is a blocking
f(z,N)— f(N,z) <0,Vz € N — {s,t} (6.b) flow if the layered network’’ contains no decreasing
directed path.
There are three approaches for solving minimum flow
problem:
(1) using decreasing path algorithms;
e(z) = f(N,z) — f(z,N),Vx € N. (7.a) (2) using preflow algorithms;
(3) using minmax algorithm, see [5].
In this paper we refer to some algorithms in ap-
é(z) = f(z,N) — f(N,z),Vx € N. (7.b) proacheq1) and(2).

352

for maximum flow problem and

for minimum flow problem.
For any preflowf we define theexcess, respectively
deficit of nodex as

respectively

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

The generic algorithm using decreasing path algorithmin this algorithm we have

for the minimum flow problem is as following:

PROGRAM GADP;

BEGIN
let f be a feasible flow in networks;
determine the residual network;
WHILE G contains a directed path,; DO
BEGIN

1)

2)

3)

)

)

) A
) identify a directed pattD; ;;
)

)

0

1

2

N

(
(
(
(
(®
(6
(
(
(
(
(
(
(

7

8 7= min{r(z,y) | (z,y) € ﬁs,t};

9 identify a pathP;; in G corresponding tdA)S,t;
10) decrease units of flow alongP; ;

11) update the residual network;

12) END;

13)END.

A nodex € N — {s,t} with é(z) < 0 is called an
active node.

E™(y) = {(=,9)l(z,y) € A}

for each nodey in V.

A pull of 71 units of flow from nodey to nodex
increases both(y) and7(y, =) by 71 units and decreases
both é(z) and7(z,y) by 71 units.

The operation of decreasing the flow on an arc is
called a pull through the arc. We say that a pull of
71 units of flow on arc(z,y) is a saturating pull if
r1 = 7(x,y) and nonsaturating otherwise. A nonsatu-
rating pull at nodey reducese(y) to zero.

We refer to the process of increasing the distance label
of a node as aelabel operation. The purpose of the
relabel operation is to create at least one admissible arc
on which the algorithm can perform further pulls.

Using the residual capacities we evaluate the flow with
the formula:

The generic preflow algorithm for the minimum flow

problem is as follows:

f(:l:a y) = l(CL‘,y) + maX{?(l',y) - C(y’x) + l(yax)v 0}

(1)PROGRAM GAP; In Figure 1 we briefly present five algorithms for

(2)BEGIN minimum flow problem.

(3) PREPROCESS;

(4) WHILE the network contains an active node DO Algori

thm| Features

(5) BEGIN gorfhm, meat

(6) select an active nodg; Dinic 1. A special implementation of the

(7) PULL/RELABEL(y); GADP.

(8) END; 2. The blocking flows in layered net-

(9)END. works G’ are determined using decreas-

(1)PROCEDURE PREPROCESS; Ing path algorithm.

(2)BEGIN Karzanov| 1. A special implementation of the both

(3) let f be a feasible flow in networks; GADP and GAP.

(4) compute the exact distance functidn 2. The blocking flows in layered ne-
by breadth first searches fromto ¢ works G’ are determined using preflow
in network G; algorithm.

(5) pull 7(z,t) units of flow on each arc . _

(z,t) € B (t): FIFO 1. A special implementation of the GAP.

(©) cf(t) o . ' preflow | 2. Examines active nodes in the FIFO

B order.

(7)E

(2) EGIN label pre-| 2. Examines active nodes with the high-

(3) IF networkG contains an admissible ata, y) flow est distance label.

(4) THEN o _ Deficit | 1. A special implementation of the GAP.

pull 71 := min{—&(y), 7(z, y)} units of flow scaling | 2. Performs pull/relabel operations at
from nodey to nodex the nodes with sufficiently large deficits

(5) ELSE and, among these nodes, selects a node

computed(y) := ~ with the smallest distance label.
min{d(z) + 1{(z,y) € E~(y),7(z,y) > 0};
(6)END; Fig. 1. Five algorithms for minimum flow problem

353

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

A bipartite networkis a networkG = (N, A,1, ¢, s, 1) We can gain the necessary results for the specific
with a node setV partitioned into two subsetd; and structure of bipartite networks.
N, so that for each argr, y) € A, eitherz € Nyandy €~ Theorem 5:For each active node, d(z) < 4ny + 1.
Ny orz € N2 andy € N;. We often represent a bipartite Proof. When a noder is relabeled, it has negative
network using the notatioty = (N1 U N2, A,l,¢,s,t). deficit and hence, the residual network has a directed
Let ny=|V1| andna=|N2|. Without any loss of gener- pathP = (g, 1, ..., z;) from nodet = 2 to nodez =
ality, we assume thaty, < n;. We also assume that;, . Since the nodes on directed pdthare alternately in
s € Ny andt € Ni. A bipartite network is called ;, and N, we havek < 2n.. Because:?(t) = 2n9 + 1
unbalancedf n, << n; andbalancedotherwise. and j(mk,) < Cf(xkq) +1<...< J(xo) + k it follows
d(z) < 4ng + 1. O
[1l. ORIGINAL ALGORITHMS FOR MINIMUM FLOW IN Theorem 6:

BIPARTITE NETWORKS (a) The number of relabel operations@n,n).
The time bound for several minimum flow algorithms (1) The number of saturating pulls @&(

automatically improves when the algorithms are applied p,oqf.

Wlt:OUt mfo<|j|f|cat||on 0 l;ni)halanced_netv;/_orks. ¢ th (a) From Theorem 5 follows that each distance label
careiul analyse of the running imes of ek, eases at mogP(ny) times. Consequently, the num-
algorithms reveals that the worst case bound deperF) % of relabel operations 9 (nan)
g :

on the number of arcs in the longest vertex simp (b) Between two consecutive saturating pulls on an
path of the network. We denote this length py For - =~ gp

general networkp < n — 1 and for a bipartite network arc (z, y), both d(z) andd(y) must increase by at least

p < 2ns + 1. Hence, for unbalanced bipartite networl% units (see [1]). By Theorem 5, oni9(n) sat_uratmg
p<<n pulls can be on an argr, y). Therefore, summing over

We consider Dinic’s algorithm for the minimum flowa"Tn; ares th7e.:_|[1humber Of_ saturletlng ?uns.fngm)]; .
problem. This algorithm construct®(p) layered net- eorem 7. 1he generic prefiow aigorthm pertorms

works and finds a blocking flow in each one. Each blockl(nim) nonsaturating pulls. _
ing flow computation perform® (i) decreases and each Proof. Let N, denote the set of active nodes. We
decrease taked(p) time. Therefore, the running time ofcONsider the potential functiohl = 5_, d(z). Since we
Dinic’s algorithm is O(p?m). Consequently, when the&llow only the nodes inV; to be active andi(z) < 4n;
Dinic’s algorithm is applied to unbalanced networks, th@r all = in Na, the initial value ofF" is at mostin3. At
running time improves fron®(n%m) to O(n3m). the end of the algorithmi? is zero.

We show that a slightly modified version of the During the pull/relabel(y operation, one of the fol-
generic preflow algorithm requires loss thahn2m) lowing two cases must apply.
time to solve problems defined on bipartite networks. (1) The algorithm is unable to find an admissible arc
To establish this result, we change the PROCEDURHoONg which it can pull flow. In this case the distance
PREPROCESS by setting(t) = 2ny + 1 instead of label of nodey increases by: > 1 units. This operation
d(t) = n. The modification stems from the observatioiiicreases” by at mostk units. Since the total increase
that any path in the residual network can have at mdBtd(y) for each node, throughout the execution of the
2ny + 1 arcs since every alternate node in the direct@dgorithm is bounded byn, the total increase if' due
path must be inN, (because the residual network i$0 increases in distance labels is boundedtby.
also bipartite) and no directed path can repeat a nodg€2) The algorithm is able to identify an arc on which
in Ny. Therefore, if we set(t) = 2ny + 1 then the it can pull flow, so it performs a saturating pull or
residual network will never contain a directed path frora nonsaturating pull. A saturating pull on afe,y)
node s to nodet and the algorithm will terminate with might create a new deficit at node thereby increasing

nam).

a minimum flow. the number of active nodes by and increasingt’ by
We present the following two theorems (see [1], [2[(z), which could be as much agn, per saturating
[5]). pull, and so4n3m over all saturating pulls. Note that a

Theorem 3:The generic preflow algorithm maintainsnonsaturating pull on ar¢r,y) does not increasgV,|.

~

valid distance at each step. Moreover, each relabelingTdfe nonsaturating pull will decreage by d(y) sincey

~

a nodez strictly increasesi(z). becomes inactive, but it simultaneously increaseby
Theorem 4:At any time during the generic preflowd(z) = d(y) — 1 if the pull causes node to become
algorithm, for each active nodethere is a directed pathactive, the total decrease i being of valuel. If node

from nodet to nodex in the residual network. x was active before the pulF’ decreases by an amount
354

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

J(y). Consequently, net decreaseliihis at leastl unit

per nonsaturating pull.
We summarize these facts. The initial value Bf tion Il. We change the preprocess operation by setting

The bipartite preflow algorithm is a simple general-
ization of the generic preflow algorithm given in Sec-

~ o~

is at most4n3 and the maximum possible increase id(t) := 2ny + 1 instead ofd(¢) := n. The modification

F is 4n3 + 4n3m. Each nonsaturating pull decreasstems from the observation that any directed path in
F by at leastl unit and F' always remains nonnega-the residual network can have at mast, arcs since

tive. Consequently, the algorithm can perform at moevery alternate node in the directed path must be in
4nd + 4n} + 4ndm = O(n3m) nonsaturating pulls, N (because the residual network is also bipartite) and
proving the theorem.

Figure 2 summarizes the improvements obtained fifrwe setd(t) := 2ny + 1, the residual network will

the next algorithms using this approach, where the valoever contain a directed path from the source nede
¢ =maxX{c(z,y)|(z,y) € A}.

O

no directed path can repeat a nodeNh. Therefore,

~

to the sink nodet and the algorithm will terminate
with a minimum flow. Consequently, the PROCEDURE
PULL/RELABEL is replaced with the PROCEDURE

Algorithm Running Running time, | - g|pyLL/RELABEL, as follows.
time, general| bipartite net-
network work (1)PROCEDURE BIPULL/RELABEL();
— ;) (2)BEGIN
Dinic nm nym (3) IF network G’ contains an admissible ata, y)
Karzanov n3 nan (4) THEN ~) .
IF network G contains an admissible ata, =)
FIFO preflow | 3 n2n (5) THEN pull 71 := min{—é(y),7(z,y),7(u,)}
units of flow over back patlty, =, u)
Highest label| ,,2,),1/2 nanml/2 (6) ELSE
preflow computed(z) :=
Deficit scaling | nm + n2loge | nem+nanloge - ELSIrEmn{d(U) + 1|(u,z) € E~ (x),7(u, z) > 0}
Fig. 2. The running time for five algorithms compuﬁed(y) = R
min{d(z) + 1|(z,y) € £~ (y),7(z,y) > 0,
(8)END;

IV. SPECIALIZATION ALGORITHMS FOR MINIMUM
FLOW IN BIPARTITE NETWORKS

We call a pull of7; units on the back patky, =, u)
a bipull. The bipull is saturatedif 7, = 7(z,y) or

All minimum flow algorithms described in this sectiod’t = 7(u,) and unsaturatedotherwise. Note that an
are preflow algorithms, i.e. algorithms that maintain @hsaturated bipull reduces the deficit at veryexo zero.
preflow at every stage. They work by examining active As in the generic preflow algorithm, the bipartite
nodes and pulling deficit from these nodes to nod®seflow algorithm always pulls flow on admissible arcs
estimated to be closer to source nodelf the source and relabels a node only if there are no admissible arcs.
node s is not reachable, however, an attempt is madence, Theorem 3 holds for this algorithm too. Theorem
to pull the deficit back to the sink node Eventually, 4. Theorem 5, Theorem 6 also hold.
there will be no deficit on any node € N — {s,t}. Theorem 8:During the execution of the bipartite pre-
At this point the preflow is a flow and, moreover, it i§low algorithm all active nodes remain iN,.

a minimum flow [5]. The algorithms use exact distance Proof. First of all, the algorithm has to saturate all
labels to measure the closeness of a node to the sowates (z,t) € E~(t). Since the nodet € Nj, the
nodes or the sink node. claim is true immediately after this step. All the other

Specialization algorithm for minimum flow in bipartitepulls in the algorithm are done using the PROCEDURE
network is calledbipartite preflow algorithm. The basic BIPULL/RELABEL, which pulls from a node inV,
idea behind the bipartite preflow algorithm is to perforthrough a node inN; to another node inV,, never
bipull from nodesN,. A bipull is a pull over two leaving any deficit on a node ilV;. No other operations
consecutive admissible arcs. It moves deficit from a nodegate deficit at any node. O
in N, to another node iV,. This approach ensures that Theorem 9:The bipartite preflow algorithm runs in
no node inN; ever has any deficit. O(n3m) time.

355

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

Proof. Let N, denote the set of active nodes. We (1) The algorithm performs no relabel operation dur-
consider the potential functioR = 3 cf(:c). Since we ing a phase. In this case the deficit of every node in
allow only the nodes iV, to be active and?(x) < 4ny N that was active at the beginning of the phase moves
for all z in N, the initial value ofF is at most4n3. The to nodes with smaller distance labels. Consequeritly,

procedure bipull/relabel(yyields one of the following decreases by at lea3tunits.

four cases: (2) The algorithm performs at least one relabel oper-
(1) it increases the distance label of node ation during a phase. In this case the potential function
(2) it increases the distance label of naga No; F' can increase or remain the same. In such a case the
(3) it pulls flow over the arcs(x,y) and (u,z), increase inF, then F' might increase by as much as

saturating one of these two arcs; the maximum increase in any distance label. Hence, by
(4) it performs a nonsaturating pull. Theorem 5, the total increase inover all the phases is
In case (1) the potential functiof increases, but the at most4n3.

total increase over all such iterations is oriln3). Combining cases (1) and (2), we find that the total
In case (2) the functior#” remains unchanged. number of phases i©(n3). O

In case (3) the functioF can increase by as much Theorem 11:The bipartite FIFO preflow algorithm
as4ns + 1 units since a new node might become activeuns in O(nam + n3) time.

Theorem 6 shows that the total increase over all iterationsProof. This theorem is a direct consequence of Theo-

is O(n3m). rem 10. O
In case (4) a nonsaturating pull decreases the potentialVe note that bound is also achieved by Karzanov’s

function F by at least2 units since it makes nodg algorithm if it is implemented using the two-arcs pull

inactive and it can make nodenewly active node with rule.

c?(u) =d(y) — 2. The highest label preflow algorithm always pulls from
This fact, in view of the preceding arguments, impliean active node with highest distance label. The nonsatu-

that the algorithm perform®(n3m) nonsaturating pulls. rating bipulls performed by the algorithm can be divided

Since all the other operations, such as the relabel opito phases. A phase consists of all bipulls that occur

ations and finding admissible arcs require oflgnom) between two consecutive relabel steps of nodesvin

time, we have established the theorem. O Within a phase, nodes iiV; can possibly be relabeled

We also consider the ideas of the bipartite preflogeveral times.
algorithm beeing applied in a straightforward manner to We remark that, in this algorithm, the deficits that are
the Karzanov, FIFO preflow, highest label preflow anohost distant from the source are pulled down two levels
deficit scaling algorithms. It yields that the algorithnat a time. Consequently, if the algorithm does not relabel
improved worst case complexity. any node duringne consecutive node examinations,

The FIFO preflow algorithm examines active nodes e total deficit reaches the source and the algorithm
first-in, first-out (FIFO) order. The algorithm maintaingerminates. Since the algorithm perfori®$n3) relabel
a queue? of nodes. It selects a nodefrom the front of operations on nodes iV,, we immediately obtain a
Q, performs pulls from this node and adds newly actiidound ofO(n3) on the number of node examinations. As
nodes to the rear af). The algorithm examines node each node examination entails at most one nonsaturating
until either it becomes inactive or it is relabeled. In thbipull, this gives a bound oO(n3) on the number of
latter case we add nodeto the rear ofp. The algorithm nonsaturating bipulls and a bound 6fn;m + n$) on
terminates when the queug of active nodes is empty. the running time of the algorithm.

To analyze the complexity of bipartite FIFO preflow The bound ofO(n3) on the number of nonsaturating
algorithm, we partition the total number of node exambipulls performed by the algorithm is rather loose and
nations into different phases. The first phase consistsaain be improved by a more clever analysis.
node examinations for those nodes that become activdlheorem 12:The bipartite highest label preflow algo-
during the preprocess operation. Fop 2, thek'” phase rithm performsO(nym) nonsaturating bipulls and runs
consists of examining all nodes that have been addedriahe same time.

Q during the(k — 1)t phase. Proof. The proof is long, complex and we omitted it
Theorem 10:The number of phases ovéris O(n2). here. O
Proof. We consider the total change in the potential The deficit scaling preflow algorithm incorporates

function F = max{d(z)|x is active node)ver an entire scaling of the deficit into the generic preflow algorithm.

phase. The initial value of is at mostdn,. We consider Theorem 13:The deficit scaling preflow algorithm
two cases: performes O(n3loge) nonsaturating bipulls and runs

356

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

O(nam + n3loge) time. Leny), & (ny)
Proof. The proof is long, complex and we omitted it @—@
here. O
Figure 3 summarizes the improvements obtained usin
this approach.

Algorithm Running Running time,
time, general | modified ver-
network sion
Karzanov n3 nom 4 n3
FIFO preflow n3 nom + n%
Highest label| ,,2.,1/2 na2m
preflow Fig. 5. The extended network
Deficit scaling | nm + n?logé | ngm +n3logé

1), £y, o oy
Fig. 3. The running time for four algorithms @ @

V. EXAMPLE

We represent in Figure 4 the initial bipartite network
G = (N{UN,, AU,) with N{ = {2,3,4} and N} =
{5.6}.

: (e, o () :

Fig. 4. The initial bipartite network

The etended network i85 = (N7 U Ny, A,l, ¢, s,t)
with the source nodes = 1, the sink nodet = 7,
Ny ={2,3,4,7} and N» = {1,5,6}. This network is
represented in Figure 5.

The network flow is in Figure 6 and the value of the
admissible flow isv = 15.

The residual networlk?(f) is in Figure 7.

Fig. 7. The initial residual network

357

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

Fig. 8. The residual network after the PREPROCESS

By applyingthe PREPROCESS procedure we obtair U
the network represented in Figure 8. _
We apply the BIPULL/RELABEL procedure. We se- 10
lecty = 5, (z,y) = (2,5), (v,z) = (1,2), 11 =
min{6,2,7} = 2 and (y,z,u) = (5,2,1). We obtain

the residual network represented in Figure 9.

Fig. 11. The residual network

and (y,z,u) = (6,3,1). Now, the residual network is
represented in Figure 12.

Fig. 9. The residual network

For the next step we have = 5, (z,y) = (3,5),
(u,z) = (1,3), 71 = min{4,1,3} = 1 and (y,z,u) =
(5,3,1). Now, the residual network is represented in
Figure 10.

For the next step we have = 5, (z,y) = (4,5),

(u,z) = (1,4), 71 = min{3,2,5} = 2 and (y,z,u) = Fig. 12. The residual network
(5,4,1). Now, the residual network is represented in
Figure 11. For the next step we have = 6, (z,y) = (4,5),

It follows thaty = 5 and there is no admissible arqu,z) = (1,4), 71 = min{8,1,3} = 1 and (y,z,u) =
(z,5). Henced(5) = min{5+1} = 6. We selecty =6, (6,4,1).
(z,y) = (3,6), (u,z) = (1,3), 71 = min{9,1,2} =1 Now, the residual network is represented in Figure 13.

358

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

Fig. 13. The residual network

It follows thaty = 6 and there is no admissible arc

~

(z,6). Hence,d(6) = min{5 + 1} = 6.

Obviously, the source node= 1 cannot be reached
from the active nodeg = 5, y = 6 using reverse paths
from y to s. In this case the deficite of these nodes will
be sent back to the node= 7. The residual network is

now represented in Figure 14.

Fig. 14. The residual network

Fig. 15. The minimum flow network

Fig. 16. The final network flow

ACKNOWLEDGMENT

The research was supported by the Transilvania Uni-
versity of Brasov and, in the case of the first and the
third authors, it was also supported by the Grant IDEI
no. 134/2007.

REFERENCES

[1] R. Ahuja, T. Magnanti and J. OrlinNetwork Flows. Theory,
algorithms and applications, Prentice Hall, Inc., Englewood
Cliffs, NY, 1993.

[2] R. Ahuja, J. Orlin, C. Stein and R. Tarjan, Improved algorithms
for bipartite network flowsSIAM Journal of Computing, Vol.

There areno anymore active nodes and the algorithm 23, 1994, pp. 906933,

stops. It pulls7 units of flow from the sink node = 7
to the source node = 1. The minimum flow in the
extended network is in Figure 15.

The value of migirrlum flow isv
maximum cut is [S,T] = (
{(2,5),(2,6),(3,6),(4,5), (4,6)}

Y
X

U
(S,T) — «(T,S) = 3+2+4+1+1-3 = 8

~

Obviously, s = I(S,T) — ¢(T, S).

)

The minimum flow in the initial bipartite network

from N| to NJ is represented in Figure 16.
359

[3] L. Ciupala and E. Ciurea, A highest-label preflow algorithm for
the minimum flow problemProceedings of tha 1" WSEAS
International Conference on ComputeGrete, Greece, 2007,
pp. 167-170.

[4] L. Ciupala and E. Ciurea, About preflow algorithms for the
minimum flow problem,WSEAS Transactions on Computer
Research, Vol. 3(1), January 2008, pp. 35-42.

[5] E. Ciurea and L. Ciupal, Sequential and parallel algorithms
for minimum flows,Journal of Applied Mathematics and Com-
puting, Vol. 15, No. 1-2, 2004, pp. 53-75.

[6] E. Ciurea and O. Georgescu, Minimum flows in unit capacity
networks,Analele Univers#tii Bucuresti, XLV, 2006, pp. 11—
20.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 2, 2008

[7] E. Ciurea, O. Georgescu and M. lolu, Minimum Flow Al-[11] D. Gusfield, C. Martel and D. Fernandez-Baca, Fast algorithms

gorithms. Dynamic Tree ImplementatiorStudia Univ. Babes for bipartite network flow,SIAM Journal of Computing, Vol.
Bolyai, Informatica, LIII(1), 2008, pp. 73-82. 16, 1987, pp. 237-251.

[8] E. Dinic, Algorithm for solution of a problem of maximum flow [12] A. Karzanov, Determining the maximal flow in a network by
in network with power estimatior§oviet Mathematics Doklady, the method of preflowsSoviet Mathematics Doklady, Vol. 15,
Vol. 11, 1970, pp. 1277-1280. 1974, pp. 434-437.

[9] O. Georgescu and E. Ciurea, Decreasing Path Algorithm fft3] S.—S. Lin, H. Chang and C.—C. Kuo, An Implementation of
minimum flows. Dynamic Tree ImplementatiorRroceedings the Parallel Algorithm for Solving Nonlinear Multi-commodity
of the 12" WSEAS International Conference on Compuyters Network Flow ProblemWSEAS Transactions on Systems, Vol.
Crete, Greece, 2008, pp. 235-240. 5(8), August 2006, pp. 1853-1860.

[10] O. Georgescu, Minimum Flow in Network using Dynamidl14] E. Milkova, Combinatorial Optimization: Mutual Relations
Tree ImplementationProceedings of3™¢ Annual South-East among Graph AlgorithmsWSEAS Transactions on Mathemat-

European Doctoral Student Conference, Thessaloniki, Greece, ics, Vol. 7(5), May 2008, pp. 293-302.
Vol. 2, 2008, pp. 192-204.

360

