

Abstract—The paper deals with a SIP performance testing

methodology. The main contribution to the field of performance
testing of SIP infrastructure consists in the possibility to perform the
standardized stress tests with the developed SIP TesterApp without a
deeper knowledge in the area of SIP communication. The developed
tool exploits several of open-source applications such as jQuery,
Python, JSON and the cornerstone SIP generator SIPp, the result is
highly modifiable and the application is able to carry out
benchmarking in accordance with RFC 6076. The main advantage is
high performance, meanwhile has been tested up to tens thousands
simultaneous connections, and scalability.

Keywords—SIP Benchmarking, SIPp, RFC 6076, RRD, SRD.

I. INTRODUCTION

HE end-to-end performance metrics enable to determine
performance characteristics of SIP servers or User Agents
and are crucial in design of modern SIP communication

infrastrucure. With proposed methodology for testing and
benchmarking SIP infrastructure, we had the opportunity to
perform several series of tests on multiple different platforms.
From these tests we realized, that it would be very beneficial to
modify the existing testing platform to allow us for performing
separate test scenarios on each of the important SIP dialogs.
This way the movement towards the modular design started.
During this work at the beginning of 2011 the new RFC 6076
was adopted finally standardizing most essential measured
parameters [1].

With the parameters standardized we have developed the
most important testing scenarios – the registration test scenario
and the call test scenario, both having its roots in the
previously used scenario for complex performance measuring
[2],[3]. Each of those scenarios offers a different perspective
when defining the SIP server limits and can be run either
separately to test some special environments or occasions or
simultaneously to simulate the real VoIP client behavior. The
latter presented a big challenge, because the testing software
does not allow running multiple scenarios at once inherently.
However this problem was walked around by exploiting SIP
security vulnerability, which allows a client from one address

Manuscript received March 8, 2012. The research leading to these results

has received funding from the European Community's Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 218086.

Miroslav Voznak is an associate professor with the Department of
Telecommunications, VSB –Technical University of Ostrava, Ostrava,
Czech Republic (phone: +420 597321699; e-mail: miroslav.voznak@vsb.cz).

Jan Rozhon is a PhD. student with the Department of
Telecommunications, VSB –Technical University of Ostrava, Ostrava,
Czech Republic (phone: +420 597321641; e-mail: jan.rozhon@vsb.cz).

register another. This way the basis of module based testing
platform has been created.

In this article we present the example of results gained by
testing different versions of most commonly used VoIP PBX
Asterisk focusing on its ability to handle multiple simultaneous
registrations coming in several consequent bursts. This
example is particularly useful to determine how the SIP server
reacts in the case of network failure and consequent restoration
of full connectivity, when all the clients try to register at once.
In the given examples the way how the SIP server responds to
bursts with high loads can be determined and all the
conclusions are made according to information obtained by the
measurements on the client side exclusively, because the
measurements on the server side are often impossible with
regard to the provider restrictions.

II. STATE OF THE ART

Due to the integration of SIP protocol to the concept of next
generation networks the implementations of this protocol are
now commonplace. This results in the increasing need for the
methodology and tools that would allow for determination
whether selected hardware has enough performance to cover
all the needs of the given environment with some spare for the
future expansion. However, in these days this demand can be
satisfied just by the proprietary solutions, which on one hand
require special hardware and on the other do not provide the
results that would be comparable with the results taken by
some competitive solution [4].

The open-source solutions, on the other hand, do not
provide the methodology for performing such tests and simply
pass the definition of procedures and parameters for the
particular test to the user. Though this feature may look like a
disadvantage, it can easily be utilized to perform test under
clearly defined conditions, during which precisely defined
parameters can be measured. These conditions and parameters
need to be defined and then implemented and both these
phases have already been partially solved. The definition of
parameters, conditions of the test and the whole methodology
has been done in RFC 6076 and IETF drafts [5], [6] and these
drafts will probably form the basis of the future IETF
standards that is why it is useful to utilize the knowledge
contained within them.

As for the the implementation the great work has been done
by the American IT company Transnexus, which created a
complex scenario for testing both most common variants of
SIP Server [4]. This implementation utilizes the capabilities of
open-source testing tool program call SIPp. This
implementation has severe deficiencies though. First, it is
primarily designed to test the environment, the base part of

SIP End to End Performance Metrics

Miroslav Voznak and Jan Rozhon

T

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 315

which is the proprietary server of this company. Second, the
measured parameters and the overall methodology is
unsuitable for recognition what of the measured time intervals
belong to the same call, which results in inconsistency of the
output results, from which only raw conclusion can be made.
The last deficiency of the Transnexus' test topology that should
be mentioned is the huge complexity of the design, because
many hardware components are required and because too
many variants of a call setup are tested. The named attributes
of the Transnexus' design result in complicated hardware and
software implementation of the design, which makes it
unsuitable for the practical use.

Our work primarily focuses on combining the best parts of
the two named sources – IETF drafts [5], [6], recently issued
IETF RFC 6076 [1] and Transnexus' design [4]. The result of
this combination is then modified, so that the final solution is
simple enough for the practical use and comprehensive enough
to provide all the needed data for the performance analysis of
the SIP Server. This modifications also include the means for
testing the B2BUA platform independently due to the
harnessing of a media flow through it [7], [8]. In this article
the complete methodology as well as the test scenario design
are presented. Furthermore, the output results are included in a
human readable form of the charts and these charts are
commented so that everyone who reads this article can easily
come to the final performance results.

III. METHODOLOGY

Transnexus used in their testing platform the open-source
testing tool SIPp, which allows for generation of high SIP load
and measurement of key parameters of individual SIP calls.
This makes the SIPp the ideal option for SIP performance
testing. Although Transnexus’ benchmarking model served as
an inspiration in the early phase of the development of our
methodology it lacks the effort for standardization. They
measure times between transmission and reception of some
key messages (e.g. Invite, 100 Trying, 180 Ringing), however
their approach does not look at these messages as the part of
the SIP transaction. This results in outputs from which the user
is unable to read more complex attributes of the system. To be
more specific, you can learn how quickly the SIP server is able
to respond to your message, but you cannot learn how quickly
it can process and resend to the destination. Our approach on
the other hand makes this possible, so it is not the issue to
recognize the “real world” parameters of the SIP server such
as Call Setup Length (later described as SRD).

From the practical point of view Transnexus’ model is
rather too complex. As the commercial subject, Transnexus
has focused on creating the model that would utilize some of
their commercial products, which led them to use their
management and billing platform, which required two more
separate computers. Moreover, the testing scenarios they
created utilize several different end locations for the
simulation of call rejection, no route issue, no device problem
and so on. This again increases the complexity of the test
platform due to the need of more physical machines. From
mentioned it is clear that this model is unsuitable for practice.
From our point of view it is beneficial to create the testing

platform that would be as simple as possible, which would
make it easier to deploy in any practical environment. This is
why we decided not to use any other special hardware and to
simulate the end location for calls just by the listening UASs,
which is made possible by the fact that we want to evaluate the
ability of the SIP server to successfully connect calling and
called party.

In order to perform SIP testing, we simulate both ends of the
SIP dialogue to test the main part of the SIP infrastructure, the
SIP server. The SIP server represents a set of servers always
involving SIP Registrar and SIP Proxy or B2BUA (Back to
Back User Agent). The latter is the most used solution in
enterprise environment, for both SMEs (Small and Medium
sized Enterprise) and LEs (Large Enterprise). Fig. 1 depicts
test hardware configuration for testing the SIP Proxy and
B2BUA.

Fig. 1. Test Bed Diagram for B2BUA and SIP Proxy.

This is a general configuration which does not reflect all the

aspects of test platform used for our measurements. Firstly, we
used both physical and virtual computers to simulate SIP
traffic. The results with both configurations were almost
identical allowing future user of this methodology to decide
for topology that would be best for him according to available
hardware.

The only condition required for testing SIP server
successfully and comparably is the interconnecting device (or

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 316

system). Basically, this can be any device or network capable
of routing of SIP messages among SIP traffic generators, SIP
server and SIP traffic recipients, but to make the results of
measurements comparable with those taken in different
network, we would be required to use the exact same topology,
which may be the issue. This is why it is advantageous to use
as simple topology as possible to reduce additional costs and
work caused by the need of some special topology. So, the
most flexible variant is to use the single switch, which is
undoubtedly a commonplace in all modern SIP installations.

Secondly, the number of devices used for the testing may
vary due to the performance of the SIP server. The more the
SIP server is efficient the more devices are needed to test its
performance especially on the UAC side. Due to the software
limitations of the SIP traffic generator (SIPp) one computer in
UAC mode is capable of creating 200 simultaneous calls with
media (for testing B2BUA) and about 220 calls per second
without media (for testing SIP Proxy) no matter what the
hardware configuration of the PC running SIPp instance is.
Therefore we need to estimate the SIP server performance to
determine the number of computers (physical or virtual)
needed for test, which makes the virtualization the more viable
option. Number of UASs is not affected by the SIP server’s
performance that much, however it is necessary to force the
SIP server to decide between different paths to UAS, therefore
there have to be at least two computers in UAS mode in the
test topology.

As well as the topology the test scenario should be as simple
as possible mainly to reduce the complexity of the test and
except of that also because it is not possible to test the SIP
Proxy (and B2BUA as well) in all the possible configurations.
Thus it is useful to focus on basic default configuration and
perform the tests with it. The output results then carry the
information about the “best case scenario” according to which
we can decide about the SIP server’s performance and
compare it with its rivals.

A. Measured Parameters

As mentioned in the Introduction we use the parameters
defined in IETF draft for all our measurements [1],[4],[5]. But
except of them we use the hardware utilization parameters as
well. Let’s now take a look at the locations, where these
groups of parameters are measured.

First group is measured at UAC and includes the call
statistics such as number of (un)successful calls and durations
of the message exchanges. RTP samples for analysis are
captured here as well.

 Second group – the hardware utilization parameters – is
measured directly on the SIP server. At this place CPU and
memory utilization and network traffic is measured. The
complete list of all measured parameters includes:

• CPU utilization.
• Memory utilization.
• Number of (un)successful calls.
• Registration Request Delay – time between first Register

method and its related 200 OK response [3].
• Session Request Delay (SRD), the time between first

Invite method and related 180 Ringing message [2],[3].

• Mean Jitter a Maximum RTP Packet Delay.

Fig. 2 shows the meaning of the RRD and SRD delays in

more detail.

Fig. 2. RRD and SRD in SIP Dialog.

B. Limit Definition in Results Analysis

The previously defined parameters do not suffice to assess
the SIP server’s performance. To be able to determine the SIP
server’s performance from the collected data we need to define
the limit values for each category of the measured parameters.
This definition must come out from the features of the SIP
protocol and generally recognized convention from IP and
classic telephony.

From the hardware utilization characteristics the CPU
utilization plays the main role in performance analysis of the
SIP server. This conclusion is logical because of the
importance of CPU in the computer architecture and the CPU
oriented operations of the general SIP server architecture.

In general, the CPU utilization characteristic is limited by
the maximal CPU performance, which is 100%, but this
boundary can be reached rarely. To be more specific, due to
the time intervals between particular measurements of the CPU
utilization can cause that short peak in CPU utilization
characteristic is not registered. However, during this peak
delays and call quality impairments can occur. To reflect this
imperfection of our methodology, performance boundary
under 100% should be anticipated. Actual value of the CPU
performance boundary may vary, though. Therefore we search
the CPU utilization characteristic for the first point where
maximum CPU utilization is reached. This point is then the

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 317

maximum number of calls, which the SIP server can handle
from the hardware performance point of view.

 The limit definition for the SIP delay characteristics RRD
and SRD comes from the nature of the SIP protocol [9], [10].
When the call is set up the delays between messages should
not exceed several hundreds of milliseconds and although
these limitations are tied up with the travel of the SIP message
from one end of call to another, it can be used for our purposes
as well, because of the similarities that come from the need to
set up a call quickly enough not to bother the user with
noticeable delays.

From this, we can estimate that the quality boundary for
RRD and SRD is somewhere around 300 milliseconds.
However, this value may vary in accordance to the need of
each one particular user. Generally, we can say that limit from
the SIP transactions point of view is reached, when SRD and
RRD characteristics start increasing rapidly. This boundary
will give us a slight space as the potential reserve.

The quality of speech is vulnerable to great delays between
consecutive RTP packets. It is affected by the jitter as well, but
the jitter issue can be eliminated by the sufficient Jitter buffer
on the receiving side, therefore maximum packet delay is the
key characteristic in RTP stream analysis [11], [12]. From the
theory of IP telephony the delays between packets should be in
the tens of milliseconds, therefore and because of the similar
reasons mentioned with SRD and RRD, we decided to set this
boundary to approximately 90 milliseconds.

All the delay characteristics use similar analogy with the
theoretical values for end-to-end delays, that is why their
definition could not be exact and these parameters may vary in
different environments. To eliminate different interpretation of
the same results and to simplify the delays analysis, we use as
the quality boundary for all the delay characteristics the point,
where the particular characteristic change its “almost constant”
trend to rapid increase. This approach gives us correct results,
which was tested experimentally, and the methodology of the
analysis is much simplier.

C. SIP Proxy Testing

In basic configuration of the SIP Proxy we are able to
measure just the SIP and utilization parameters. RTP stream
does not flow through SIP Proxy and thus it does not represent
the load for it. This is why we do not have to think about the
call length because no matter how long the call is the hardware
utilization is the same, so the only appropriate metric for
measuring SIP Proxy is the number of calls generated per
second (or any other time interval).

Each measurement on SIP Proxy consists of several steps.
Every single step takes about 16 minutes, this means that for
15 minutes, 10-second long calls are to be generated at a user-
defined call rate. Then there is a 10-second period when the
unfinished calls are terminated. This repeats for every single
step of the call rate. Every call consists of a standard SIP
dialogue and pause instead of media. Because the load is not
constant but increases slowly at the beginning of the test (first
10 seconds) and decreases at the end of it (last 10 seconds),
the results taken after this starting period and before the ending
one are the only ones which are going to be considered valid.

To allow additional changes in time interval setting in the
scenario and to strengthen the consistency of the method we
decided to use the data collected during the middle 10 minutes
of each step. All the parameters named in the previous
subsection are measured except those related with RTP stream.

The 10 second long time interval that was mentioned several
times came from the compromise between reasonable call
length and the need for generating as much of the calls per
second as possible. It allows for decent performance and does
not require huge database of subscribers. This interval can be
changed but cannot exceed 2.5 minutes that allow for
collecting the valid data.

SRD is measured although this scenario cannot be
considered as end-to-end, this condition is defined in draft [6].
We decided to measure it because the load on the UASs is
minimal even for high call rates, which makes the delays
created by the UASs both minimal and almost constant.
Therefore we can use this parameter to decide about the SIP
Proxy’s performance, because the delays created by it are the
only variable making the collected data useful. This is the only
deviation of our method from the draft [6].

D. B2BUA Testing

Unlike SIP Proxy for this type of SIP server the RTP stream
presents the highest load on the SIP server therefore the
number of simultaneous calls must be used as a metric. This is
the main difference between the B2BUA and SIP Proxy testing
scenarios. Second not so important difference (from the
methodology point of view) is that in this configuration we are
to measure effectiveness of codec translation because in this
scenario performance of the B2BUA is not affected only by its
setting but also by UAC and UAS configurations. The test
routine will then be repeated for each case of different codec
setting.

The method of the test is however almost the same, the only
issue we face is the new metric together with the need for
revising the time interval for a single call. The new metric is an
issue when the SIP traffic generator cannot be ordered to
create certain number of simultaneous calls. In this case it is
necessary to calculate the number of calls generated per
second. This can be done by this equation:

R SC C T= ⋅ (1)

CR is the desired Call Rate, CS is the number of

simultaneous Calls we want to generate and T is Time interval
defining how long the call (media) should be. Time interval
used for B2BUA in our measurements was set to 60 seconds
because most calls have this length, but again this parameter
can be changed. To perform the testing of RTP streams we
use a special computer, which allows us to use more
sophisticated tools for capturing the network traffic without the
RTP and SIP parts of the tests influencing each other. Because
we focus on testing effectiveness and speed of codec
translation we were, at this point, able to determine the
maximum load which the SIP server can handle from the SIP
or RTP point of view. However, these results would only be

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 318

valid for a single machine/platform and that is why we add one
more step to the data analysis. The same procedure of testing
as mentioned above is performed on a machine configured to
allow media to only pass through the SIP server. The results
taken during this test serve as a basis to which we relate all the
other results. The relation is expressed in (2) as a performance
ratio. The performance rating factor PRF is a ratio of any
previously mentioned parameter measured in codec translation
case (PCT) with a certain number of simultaneous calls to the
value of the same parameter (P) taken in case without codec
translation and the same load.

100CT
RF

P
P

P
= ⋅ (2)

 This step allows us to compare the results from hardware

and platform independently [17].

IV. PLATFORM DESCRIPTION AND ITS ENHANCEMENTS

To successfully generate high loads of SIP traffic we have
been using the open source traffic generator SIPp. This
software allows for generating both simple and complex SIP
dialogs with the emphasis on scenario modifiability. The
scenarios are defined in the XML format which makes it
possible to create and generate well-formed SIP messages as
well as the malformed ones; therefore it can be used for
security tests as well. Unlike other SIP traffic generation tools
such as Seagull [13] or SIPSak [14], which are open-source as
well, SIPp offers much greater variety of possible usage
starting from optional messages in SIP dialog, through
automatic call identification and dialog-oriented variables
generation to RTP stream support.

Using the XML SIPp can create many calls and route them
to the SIP server, however to successfully stress test the tested
infrastructure we need to create huge number of calls
(simultaneous or generated per time unit). And this is where
SIPp’s inherent limitation comes to scene preventing us to
reach reasonable loads. This limitation comes from the SIPp’s
single threaded software design preventing it from using
multiple processor cores to increase its call capacity. This
could have been easily worked around by running multiple
processes of the SIPp, if there was not a particular problem in
the SIPp source codes. This problem appears when multiple
virtual network interfaces are being used. SIPp ignores the
command line arguments instructing it to use a specific
network interface and automatically falls back to the primary
network interface. This problem is connected with the media
stream only; therefore it does not influence the SIP signaling
messages. However, this problem prevents the user from
generating most utilizing part of the call and thus diminishing
the testing reasonability. Because of the stated problem we
needed to use multiple computer platform design or
virtualization techniques to spread the load evenly among the
processor cores. By adopting this design we were able to
create a powerful and stable testing platform which was on

some hardware able to generate hundreds of simultaneous calls
with media allowing us to stress test low to middle SIP servers.
However the management and control over the platform was
problematic and needed to be improved so it can be used by
less experienced users and so its preparation is not so time
consuming.

Fig. 3. Test platform development in time.

In this phase we focused on the right coding the SIPp’s media
capabilities, since it was the only feasible way to make it run
on the single computer in multi-process mode. Through
analysis of the source code we managed to find the
problematic section of the code and fix it. This way we
removed the biggest obstacle from our way to multi-process
design. The whole platform synchronization moved from SSH
protocol to internal scripting, which is much more efficient and
convenient. The whole process of testing platform
development is depicted on the Fig. 1, which illustrates the
transition from multi computer design to design based on
virtual computers and finally the design based on multi process
approach, see Fig. 3.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 319

Apart from code redesign we had to face the fact that
multiple processes of SIPp caused nonlinear utilization of the
hardware resources of the computer. Basically, we discovered
that the distribution of the individual processes among
processor cores is not performed well by the standard Linux
kernel utilities – IRQbalance mostly. This utility tries to spread
the interrupts generated in our case mainly by the network
traffic. However in our case it causes the individual interrupts
to be mapped to a core and then remapped again very
frequently, which causes additional load mainly in the CPU
cache memory. This had to be countered to allow our platform
to reach highest possible load. Through analysis of the
individual interrupt handling cases – without IRQbalance, with
it and with manual distribution using SMP_affinity, we came
to the conclusion that the manual distribution of interrupts
serves our purpose best. The illustration of how the interrupts
are handled in the 4-core system is depicted on the Fig. 4.

Fig. 4. Illustration of CPU Core Utilization with different kinds of
Interrupt Handling.

 This conclusion resulted in emergence of a new hardware

requirement, since the interrupts can be manually assigned to
processor core only when the network interface card supports
the MSI-X technology. Since the load generated on our

platform is composed from hundreds of separate low
bandwidth connections the higher number of interrupt queues
is beneficial. This led us to use NIC with Intel 82575/82576
chipsets.

Another problem we were facing when using the
multiprocessing design was the high memory utilization
especially in higher loads. This was caused by the buffering.
Generally speaking, when UDP datagram is received it is
firstly stored in the RAM until the process is given the
opportunity to receive the datagram from the RAM. The total
amount of memory one connection can use is precisely defined
in the kernel as the UDP buffer size. In a case when huge
number of UDP datagrams is received every second and the
hardware is not performing enough to let the corresponding
process handle this datagram stream is being stored in RAM
until the maximum size of the buffer is reached, after that all
new received datagrams are dropped. So in this case of high
loads we face two opposing problems. First we need to set the
UDP buffer size as large as possible to keep as many UDP
datagrams as possible and second we need to reduce the UDP
buffer size as much as possible to reduce the amount of
memory which is then allocated to each connection. To gain
the optimal size of the UDP buffers we performed a series of
measurements which resulted in setting the default size to
256kB and the maximum possible size to 1024kB, which
allowed us to reach high load without exhausting all our
memory and to perform well enough not to interfere with the
SIP and RTP sessions. The Fig. 5 shows illustratively the
mentioned compromise.

Fig. 5. Illustration of how to get the best UDP buffer size

By accomplishing the steps we have mentioned in this
section we have created a powerful hardware optimized
platform for generating high number of simultaneous calls
reaching to somewhat about 6 000 simultaneous calls on 12-
core machine allowing us to stress test the SIP elements of
almost any performance [15], [16].

V. PLATFORM MANAGEMENT AND CONTROL

Since the performance of the platform is not an issue now
we moved our attention to the management and control
mechanism so we could allow even not experienced user to
perform a testing using our software tools and guides. To

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 320

achieve this we need to move the test control from the linux
command line to a high layer graphical tool. Since the whole
platform is meant to run on the high performance servers
where display might not be present or available the web
application was a logical step.

There are several languages to pick up from including the
PHP, Perl, Python or Java. To allow for a rapid application
development we decided to use a web framework that would
provide us with enough predefined functionality to develop the
application as quickly as possible but allowed to modify and
control its function widely enough to fit our needs. Through
series of attempts with different frameworks we focus on the
Web2py framework which is written in Python and which
provides both efficiency and user convenience.

Fig. 6. Web interface application functionality scheme.

Using this framework we have developed a web interface
application which provides functionality to run and monitor
tests, view results and manage the hardware utilization. This
application uses these technologies as its important and
integral parts:

• Web2py framework for web page generation,

• JSON format to transfer results,
• jQuery to display the results graphically,
• Python to run the utilization distribution algorithms,
• SIPp for call signaling and media,
• SQLite database to store the results and test parameters.

Since all the mentioned technologies and applications are

distributed freely under the GPL license or its derivatives the
whole solution when finalized will also be distributed under
this license.

The basic functionality of the web application is depicted on
the Fig. 6 and shows us that the user enters basic parameters of
the test to the form which is displayed as the web page on his
browser.

Fig. 7. Web interface application with example of test results.

The data the user enters include IP addresses of individual
UACs and UASs, address of the SIP server, scenario, which is
to be used etc. These parameters are then passed to the python
algorithm using the POST method. The algorithm then counts
the best possible distribution of the load among the CPU cores
and recounts the parameters so it is usable for individual SIPp
processes, after which it runs them. The result files of the
individual SIPp processes are periodically monitored and
parsed and the data stored in them is inserted to the database
from which the user can access it using its browser. The data
between server and user’s browser are encoded in JSON
format and then interpreted using jQuery library Highcharts so
that the user has the graphical overview of the ongoing test.
The example of test results in graphical view is depicted on the
Fig. 7. The data about the performed tests and its input
parameters are stored for the future usage so that the user can

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 321

repeat a test as many times as it is needed without the need to
repeatedly enter the parameters to the form.

This way the powerful web interface can improve the user
experience with our platform and allow not experienced users
to use it.

VI. RESULTS

As an example of benchmarking, we analyse B2BUA in case
with transcoding and without transcoding. The data collected
during the whole test of B2BUA are in text format (binary data
can be converted), so the data analysis can easily be done by
any spreadsheet application, but for the correct interpretation
of the data we have to perform a series of the same
measurements to ensure that the effect of random events such
as data packet scheduling techniques is marginal. The actual
data then can be determined as the average of the collected
data or the multitude of measurements can just serve to reveal
the flawed data, which then can be replaced by the interpolated
values.

Chart on Fig.8 clearly illustrate that the call is set up even
quicker when there is a codec translation in use and the load is
under 240 simultaneous calls, it is valid for Asterisk 1.6.2.
Then, as the CPU utilization increases, the delays get very
long. The fluctuations in charts with normalized values are
caused by the random events during the measurements.
Because we relate these values in a single equation (2), the
variances get more distinctive, however this does not affect the
final decision about the B2BUA performance from the SIP
point of view. The Fig. 9 depicts a situation without codec
translation where we can observe a rapid increase of delays
between 600-660 simultaneous calls.

Fig. 8. B2BUA (Asterisk 1.6.2) with transcoding.

Fig. 9. B2BUA (Asterisk 1.6.2) without transcoding.

VII. CONCLUSION

With the testing methodology standardized [1] we were able to
concentrate more effort on a creation of the interface that
would allow for running the vast diversity of tests based on the
simplified user input form. The newly created high level
management and control interface is primarily meant for the
not experienced users that might have the need to perform a
stress testing on their own VoIP infrastructure such as network
administrators, telecommunication engineers and so on, who
have no mean to perform this kind of testing, because as far as
we know, there is not a similar solution, which can be used for
stress testing and benchmarking of SIP infrastructure with high
level control and management system based on web
technologies. Using the technologies such as jQuery, Python,
JSON and others together with the code change in the
cornerstone application SIPp this was made possible and the
final solution is now being tested for the possible faults and
instability. The main contribution to the field of performance
testing of SIP infrastructure lies in the possibility to perform
the standardized stress tests with our developed SIP TesterApp
without the deeper knowledge in the area of SIP
communication. Our tool exploits several of open-source
applications and the result is highly modifiable tool. Further
step of the platform development is the easing of software
distribution using one of the popular package management
systems. This can be achieved till the end of the 2012.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community's Seventh Framework
Programme (FP7/2007-2013) under grant agreement no.
218086.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 322

REFERENCES

[1] D. Malas, A. Morton, ”Basic Telephony SIP End-to-End Performance
Metrics,” Internet Engineering Task Force: RFC 6076, 2011, ISSN
2070-1721.

[2] M. Voznak, J. Rozhon, ”Approach to stress tests in SIP environment
based on marginal analysis,” In SPRINGER Telecommunication
Systems, 11p., DOI: 10.1007/s11235-011-9525-1, June 2011.

[3] J. Rozhon, M. Voznak, ”Registration Burst Load Test,” Conference
Proceedings ICDIPC 2011, In SPRINGER Communications in
Computer and Information Science , (Part 2) 2011, Vol. 189 CCIS, July
2011, pp. 329-336.

[4] Transnexus, Performance Test of Asterisk V1.4 as a Back to Back User
Agent [Online]. Available: http://www.transnexus.com/.

[5] S. Poretsky, V. Gurbani, C., Davids, ”Terminology for Benchmarking
Session Initiation Protocol (SIP) Networking Devices, ” IETF draft,
March 2011.

[6] S. Poretsky, V. Gurbani, C., Davids, ”Methodology for Benchmarking
SIP Networking Devices, ” IETF draft, September 2011.

[7] S. Narayan S., S. Kolahi, R. Waiariki, M.Reid, ”Performance Analysis
of Network Operating Systems.” Proceedings of the 2nd WSEAS
International Conference on COMPUTER ENGINEERING and
APPLICATIONS, Acapulco, Mexico, 2008.

[8] C. Simian, V. Georgiev, ”On Some Aspects Regarding Computer
Networks’ Performance Analysis.” Proceedings of the 13th WSEAS
International Conference on COMPUTERS, Rhodos, Greece, 2009.

[9] I. Baronak and M. Halas, "Mathematical representation of VoIP
connection delay," RADIOENGINEERING Volume: 16 Issue: 3,
September 2007, pp. 77-85.

[10] F. Alvarez-Vaquero, J. Sanz-Gonzalez,"Network VoIP for corporative
environment design," In Proc. 7th WSEAS International Conference on
Telecommunications and Informatics, May 2008, Istanbul, Turkey, pp.
194-198.

[11] A. Kovac, M. Halas, M. Orgon, M. Voznak, "E-model MOS Estimate
Improvement through Jitter Buffer Packet Loss Modelling," In Advances
in Electrical and Electronic Engineering, Volume 9, Number 5,
December 2011, pp. 233-242.

[12] M. Kavacky, E. Chromy, L. Krulikovska and P. Pavlovic, “Quality of
Service Issues for Multiservice IP Networks, “ In Proc. SIGMAP 2009
International Conference on Signal Processing and Multimedia
Applications, Milan, Italy, July 2009, pp. 185 – 188.

[13] Seagull development team, Seagull reference documentation [Online].
Available: http://gull.sourceforge.net/doc/index.html.

[14] SIPsak development team, SIPsak home page [Online].
Available: http://sipsak.org/.

[15] M. Voznak, J. Rozhon, “Methodology for SIP infrastructure
performance testing,“ WSEAS Transactions on Computers, Volume 9,
Issue 9, September 2010, pp. 1012-1021.

[16] M. Voznak, J. Rozhon, "SIP back to back user agent benchmarking,"
Proceedings - 6th International Conference on Wireless and Mobile
Communications, ICWMC 2010, Valencia, September 2010, pp.92-96.

[17] M. Voznak, J. Rozhon, "SIP infrastructure performance testing," 9th
WSEAS International Conference on Telecommunications and
Informatics, TELE-INFO '10, Catania, May 2010, pp. 153-158.

Miroslav Voznak holds position as an associate
professor with Department of Telecommunications,
Technical University of Ostrava. He received his
M.S. and Ph.D. degrees in telecommunications,
dissertation thesis “Voice traffic optimization with
regard to speech quality in network with VoIP
technology” from the Technical University of
Ostrava, in 1995 and 2002, respectively. Topics of
his research interests are Next Generation Networks,
IP telephony, speech quality and network security.

Jan Rozhon received his M.S. degree in
telecommunications from VSB – Technical
University of Ostrava, Czech Republic, in 2010 and
he continues in studying Ph.D. degree at the same
university. His research is focused on performance
testing of NGN and in this field he cooperates with
CESNET association. He received rector's
appreciation for scientific contribution of his
diploma thesis in 2010.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 3, Volume 6, 2012 323

